메뉴 건너뛰기




Volumn 40, Issue 2, 2012, Pages 345-361

Variable selection via the weighted group lasso for factor analysis models

Author keywords

Factor analysis; L 1 regularization; MSC 2010: Primary 62H25; Number of factors; Secondary 62J07; Variable selection; Weighted group lasso

Indexed keywords


EID: 84861211116     PISSN: 03195724     EISSN: 1708945X     Source Type: Journal    
DOI: 10.1002/cjs.11129     Document Type: Article
Times cited : (30)

References (31)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, Petrovand, B. N. & Csaki, F., editors. Akademiai Kiado, Budapest
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, Petrovand, B. N. & Csaki, F., editors. Akademiai Kiado, Budapest, pp. 267-281.
    • (1973) , pp. 267-281
    • Akaike, H.1
  • 2
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 3
    • 84861217976 scopus 로고    scopus 로고
    • An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley, New York.
    • Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley, New York.
    • (2003)
    • Anderson, T.W.1
  • 4
    • 0000971819 scopus 로고
    • Statistical inference in factor analysis. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Neyman, J., editor. University of California Press, Berkeley, 5
    • Anderson, T. W. & Rubin, H. (1956). Statistical inference in factor analysis. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Neyman, J., editor. University of California Press, Berkeley, 5, pp. 111-150.
    • (1956) , pp. 111-150
    • Anderson, T.W.1    Rubin, H.2
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 84861203491 scopus 로고
    • Exploratory factor analysis. Handbook of multivariate experimental psychology, 2nd ed., Plenum Press, New York and London
    • Gorsuch, R. L. (1988). Exploratory factor analysis. Handbook of multivariate experimental psychology, 2nd ed., Plenum Press, New York and London, pp. 231-258.
    • (1988) , pp. 231-258
    • Gorsuch, R.L.1
  • 10
    • 0041906877 scopus 로고
    • A Newton-Raphson algorithm for maximum likelihood factor analysis
    • Jennrich, R. I. & Robinson, S. M. (1969). A Newton-Raphson algorithm for maximum likelihood factor analysis. Psychometrika, 34, 111-123.
    • (1969) Psychometrika , vol.34 , pp. 111-123
    • Jennrich, R.I.1    Robinson, S.M.2
  • 11
    • 0001766512 scopus 로고
    • Some contributions to maximum likelihood factor analysis
    • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443-482.
    • (1967) Psychometrika , vol.32 , pp. 443-482
    • Jöreskog, K.G.1
  • 12
    • 34250922831 scopus 로고
    • The varimax criterion for analytic rotation in factor analysis
    • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.
    • (1958) Psychometrika , vol.23 , pp. 187-200
    • Kaiser, H.F.1
  • 13
    • 0034344853 scopus 로고    scopus 로고
    • Stepwise variable selection in factor analysis
    • Kano, Y. & Harada, A. (2000). Stepwise variable selection in factor analysis. Psychometrika, 65, 7-22.
    • (2000) Psychometrika , vol.65 , pp. 7-22
    • Kano, Y.1    Harada, A.2
  • 14
    • 21344490258 scopus 로고
    • Identification of inconsistent variates in factor analysis
    • Kano, Y. & Ihara, M. (1994). Identification of inconsistent variates in factor analysis. Psychometrika, 59, 5-20.
    • (1994) Psychometrika , vol.59 , pp. 5-20
    • Kano, Y.1    Ihara, M.2
  • 15
    • 84861203494 scopus 로고
    • Multivariate Analysis, 2nd ed., Charles Griffin, London.
    • Kendall, M. G. (1980). Multivariate Analysis, 2nd ed., Charles Griffin, London.
    • (1980)
    • Kendall, M.G.1
  • 16
    • 3242882795 scopus 로고    scopus 로고
    • Bayesian information criteria and smoothing parameter selection in radial basis function networks
    • Konishi, S., Ando, T., & Imoto, S. (2004). Bayesian information criteria and smoothing parameter selection in radial basis function networks. Biometrika, 91, 27-43.
    • (2004) Biometrika , vol.91 , pp. 27-43
    • Konishi, S.1    Ando, T.2    Imoto, S.3
  • 17
    • 84861218877 scopus 로고    scopus 로고
    • Information Criteria and Statistical Modeling, Springer, New York.
    • Konishi, S. & Kitagawa, G. (2008). Information Criteria and Statistical Modeling, Springer, New York.
    • (2008)
    • Konishi, S.1    Kitagawa, G.2
  • 18
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes, H. & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41-67.
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.1    West, M.2
  • 19
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis.Psychometrika, 47
    • Rubin, D. B. & Thayer, D. T. (1982). EM algorithms for ML factor analysis.Psychometrika, 47, 69-76.
    • (1982) , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 21
    • 46749151407 scopus 로고    scopus 로고
    • Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data
    • Shimamura, T., Imoto, S., Yamaguchi, R., & Miyano, S. (2007). Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 19, 142-153.
    • (2007) Genome Informatics , vol.19 , pp. 142-153
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Miyano, S.4
  • 22
    • 84926273183 scopus 로고
    • Some criteria for variable selection in factor analysis
    • Tanaka, Y. (1983). Some criteria for variable selection in factor analysis. Behaviormetrika, 13, 31-45.
    • (1983) Behaviormetrika , vol.13 , pp. 31-45
    • Tanaka, Y.1
  • 26
    • 0001512938 scopus 로고
    • On various causes of improper solutions in maximum likelihood factor analysis
    • van Driel, O. P. (1978). On various causes of improper solutions in maximum likelihood factor analysis. Psychometrika, 43, 225-243.
    • (1978) Psychometrika , vol.43 , pp. 225-243
    • van Driel, O.P.1
  • 27
    • 0002919767 scopus 로고
    • A proposition of generalized method for forward selection of variables
    • Yanai, H. (1980). A proposition of generalized method for forward selection of variables. Behaviormetrika, 7, 95-107.
    • (1980) Behaviormetrika , vol.7 , pp. 95-107
    • Yanai, H.1
  • 28
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 68, 49-67.
    • (2006) Journal of the Royal Statistical Society Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 31
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • Zou, H., Hastie, T., & Tibshirani, R. (2007). On the "degrees of freedom" of the lasso. Annals of Statistics, 35, 2173-2192.
    • (2007) Annals of Statistics , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.