메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 1771-1798

Bayesian learning in sparse graphical factor models via variational mean-field annealing

Author keywords

Annealing; Gene expression profiling; Graphical factor models; MAP estimation; Sparse factor analysis; Variational mean field method

Indexed keywords

FACTOR ANALYSIS; FACTOR MODEL; GENE EXPRESSION PROFILING; MAP ESTIMATION; MEAN-FIELD METHODS; VARIATIONAL MEAN-FIELD METHOD;

EID: 77953553836     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (35)
  • 2
    • 68749121819 scopus 로고    scopus 로고
    • Sparse probabilistic projections
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors Cambridge, MA, MIT Press
    • C. Archambeau and F. Bach. Sparse probabilistic projections. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 73-80, Cambridge, MA, 2009. MIT Press.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 73-80
    • Archambeau, C.1    Bach, F.2
  • 6
    • 34548527584 scopus 로고    scopus 로고
    • Dynamic matrix-variate graphical models
    • C.M. Carvalho and M. West. Dynamic matrix-variate graphical models. Bayesian Analysis, 2: 69-98, 2007.
    • (2007) Bayesian Analysis , vol.2 , pp. 69-98
    • Carvalho, C.M.1    West, M.2
  • 8
    • 63649150787 scopus 로고    scopus 로고
    • Decomposing cellular signaling pathways into functional units: A genomic strategy
    • J. Chang, C.M. Carvalho, S. Mori, A. Bild, Q. Wang, M. West, and J.R. Nevins. Decomposing cellular signaling pathways into functional units: A genomic strategy. Molecular Cell, 34:104-114, 2009.
    • (2009) Molecular Cell , vol.34 , pp. 104-114
    • Chang, J.1    Carvalho, C.M.2    Mori, S.3    Bild, A.4    Wang, Q.5    West, M.6    Nevins, J.R.7
  • 10
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • A. d'Aspremont, L. El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434-448, 2007.
    • (2007) SIAM Review , vol.49 , Issue.3 , pp. 434-448
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 12
    • 84864043341 scopus 로고    scopus 로고
    • Infinite latent feature models and the indian buffet process
    • Y. Weiss, B. Schölkopf, and J. Piatt, editors Cambridge, MA, MIT Press
    • T.L. Griffiths and Z Ghahramani. Infinite latent feature models and the indian buffet process. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems 18, pages 475-482, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 475-482
    • Griffiths, T.L.1    Ghahramani, Z.2
  • 13
    • 84862296954 scopus 로고    scopus 로고
    • Sparse probabilistic principal component analysis
    • Y. Guan and J Dy. Sparse probabilistic principal component analysis. Proceedings of AISTATS 2009,5:185-192, 2009.
    • (2009) Proceedings of AISTATS 2009 , vol.5 , pp. 185192
    • Guan, Y.1    Dy, J.2
  • 15
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • O. Hirose, R. Yoshida, S. Imoto, R. Yamaguchi, T. Higuchi, D. S. Charnock-Jones, C Print, and S. Miyano. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics, 24(7):932-942, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.7 , pp. 932-942
    • Hirose, O.1    Yoshida, R.2    Imoto, S.3    Yamaguchi, R.4    Higuchi, T.5    Charnock-Jones, D.S.6    Print, C.7    Miyano, S.8
  • 18
  • 19
    • 0004283231 scopus 로고    scopus 로고
    • M.I. Jordan, editor Cambridge MA: MIT Press
    • M.I. Jordan, editor. Learning in Graphical Models. Cambridge MA: MIT Press, 1999.
    • (1999) Learning in Graphical Models
  • 20
  • 21
    • 1842830818 scopus 로고    scopus 로고
    • Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon
    • M. Katoh and M. Katoh. Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon. International Journal of Oncology, 24:757-763, 2004.
    • (2004) International Journal of Oncology , vol.24 , pp. 757-763
    • Katoh, M.1    Katoh, M.2
  • 23
    • 84887212455 scopus 로고    scopus 로고
    • Cross-study projections of genomic biomarkers: An evaluation in cancer genomics
    • J.E. Lucas, C.M. Carvalho, J-T.A. Chi, and M. West. Cross-study projections of genomic biomarkers: An evaluation in cancer genomics. PLoS ONE, 4(2):e4523, 2009.
    • (2009) PLoS One , vol.4 , Issue.2
    • Lucas, J.E.1    Carvalho, C.M.2    Chi, J.-T.A.3    West, M.4
  • 24
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • D.J.C Mackay. Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6:469-505, 1995.
    • (1995) Network: Computation in Neural Systems , vol.6 , pp. 469-505
    • Mackay, D.J.C.1
  • 27
    • 77953559148 scopus 로고    scopus 로고
    • The infinite hierarchical factor regression model
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors Cambridge, MA, MIT Press
    • P. Rai and H. Daumé. The infinite hierarchical factor regression model. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1321-1328, Cambridge, MA, 2009. MIT Press.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1321-1328
    • Rai, P.1    Daumé, H.2
  • 28
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing em algorithm
    • N. Ueda and R. Nakano. Deterministic annealing EM algorithm. Neural Networks, 11:271-282, 1998.
    • (1998) Neural Networks , vol.11 , pp. 271-282
    • Ueda, N.1    Nakano, R.2
  • 31
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, and M. West, editors, Oxford University Press
    • M. West. Bayesian factor regression models in the "large p, small n" paradigm. In J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, and M. West, editors, Bayesian Statistics 7, pages 723-732. Oxford University Press, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 34
    • 33745590867 scopus 로고    scopus 로고
    • An analytic tool for clustering, data visualization and module finder on gene expression profiles
    • R. Yoshida, T. Higuchi, S. Imoto, and S. Miyano. Arraycluster: an analytic tool for clustering, data visualization and module finder on gene expression profiles. Bioinformatics, 22(12): 1538-1539, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.12 , pp. 1538-1539
    • Yoshida, R.1    Higuchi, T.2    Imoto, S.3    Miyano Arraycluster, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.