메뉴 건너뛰기




Volumn 169, Issue , 2015, Pages 430-438

Fault detection for a class of industrial processes based on recursive multiple models

Author keywords

Multiple models; RKPCA; SVDD; Time varying

Indexed keywords

ARTIFICIAL INTELLIGENCE; CRACKS; DATA DESCRIPTION; ETHYLENE; FAULT DETECTION; MONITORING; PETROCHEMICAL PLANTS; PETROCHEMICALS; PROCESS MONITORING;

EID: 84938201172     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.08.107     Document Type: Article
Times cited : (11)

References (20)
  • 1
    • 84875952239 scopus 로고    scopus 로고
    • Modeling and monitoring for handling nonlinear dynamic processes
    • Zhang Y., An J., Li Z., Wang H. Modeling and monitoring for handling nonlinear dynamic processes. Inf. Sci. 2013, 235:97-105.
    • (2013) Inf. Sci. , vol.235 , pp. 97-105
    • Zhang, Y.1    An, J.2    Li, Z.3    Wang, H.4
  • 2
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J. Process Control 2012, 22(4):778-788.
    • (2012) J. Process Control , vol.22 , Issue.4 , pp. 778-788
    • Yu, J.1
  • 3
    • 84860523095 scopus 로고    scopus 로고
    • Fault detection in dynamic processes using a simplified monitoring-specific cva state space modelling approach
    • Stubbs S., Zhang J., Morris J. Fault detection in dynamic processes using a simplified monitoring-specific cva state space modelling approach. Comput. Chem. Eng. 2012, 41:77-87.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 77-87
    • Stubbs, S.1    Zhang, J.2    Morris, J.3
  • 4
    • 84865568980 scopus 로고    scopus 로고
    • Improved multi-scale kernel principal component analysis and its application for fault detection
    • Zhang Y., Li S., Hu Z. Improved multi-scale kernel principal component analysis and its application for fault detection. Chem. Eng. Res. Des. 2012, 90(9):1271-1280.
    • (2012) Chem. Eng. Res. Des. , vol.90 , Issue.9 , pp. 1271-1280
    • Zhang, Y.1    Li, S.2    Hu, Z.3
  • 5
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel pca-based monitoring approach for nonlinear processes
    • Ge Z., Yang C., Song Z. Improved kernel pca-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 2009, 64(9):2245-2255.
    • (2009) Chem. Eng. Sci. , vol.64 , Issue.9 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 6
    • 78449282926 scopus 로고    scopus 로고
    • Kernel generalization of ppca for nonlinear probabilistic monitoring
    • Ge Z., Song Z. Kernel generalization of ppca for nonlinear probabilistic monitoring. Ind. Eng. Chem. Res. 2010, 49(22):11832-11836.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , Issue.22 , pp. 11832-11836
    • Ge, Z.1    Song, Z.2
  • 7
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z., Song Z. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng. Pract. 2008, 16(12):1427-1437.
    • (2008) Control Eng. Pract. , vol.16 , Issue.12 , pp. 1427-1437
    • Ge, Z.1    Song, Z.2
  • 8
    • 73749084616 scopus 로고    scopus 로고
    • A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes
    • Maestri M., Farall A., Groisman P., Cassanello M., Horowitz G. A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes. Computers & chemical engineering 2010, 34(2):223-231.
    • (2010) Computers & chemical engineering , vol.34 , Issue.2 , pp. 223-231
    • Maestri, M.1    Farall, A.2    Groisman, P.3    Cassanello, M.4    Horowitz, G.5
  • 9
    • 0029709519 scopus 로고    scopus 로고
    • Validation and verification of continuous plants operating modes using multivariate statistical methods
    • Zullo L. Validation and verification of continuous plants operating modes using multivariate statistical methods. Comput. Chem. Eng. 1996, 20:S683-S688.
    • (1996) Comput. Chem. Eng. , vol.20 , pp. S683-S688
    • Zullo, L.1
  • 10
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang D.-H., Han C. Real-time monitoring for a process with multiple operating modes. Control Eng. Pract. 1999, 7(7):891-902.
    • (1999) Control Eng. Pract. , vol.7 , Issue.7 , pp. 891-902
    • Hwang, D.-H.1    Han, C.2
  • 11
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54(7):1811-1829.
    • (2008) AIChE J. , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 12
    • 0034282081 scopus 로고    scopus 로고
    • Ethylene compressor monitoring using model-based pca
    • Rotem Y., Wachs A., Lewin D. Ethylene compressor monitoring using model-based pca. AIChE J. 2000, 46(9):1825-1836.
    • (2000) AIChE J. , vol.46 , Issue.9 , pp. 1825-1836
    • Rotem, Y.1    Wachs, A.2    Lewin, D.3
  • 13
    • 33947430572 scopus 로고    scopus 로고
    • Uncertain fuzzy clustering. interval type-2 fuzzy approach to c-means
    • Hwang C., Rhee F.-H. Uncertain fuzzy clustering. interval type-2 fuzzy approach to c-means. IEEE Trans. Fuzzy Syst. 2007, 15(1):107-120.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.1 , pp. 107-120
    • Hwang, C.1    Rhee, F.-H.2
  • 14
    • 84888049977 scopus 로고    scopus 로고
    • A novel method for detecting processes with multi-state modes
    • Wang X., Wang X., Wang Z., Qian F. A novel method for detecting processes with multi-state modes. Control Eng. Pract. 2013, 21(12):1788-1794.
    • (2013) Control Eng. Pract. , vol.21 , Issue.12 , pp. 1788-1794
    • Wang, X.1    Wang, X.2    Wang, Z.3    Qian, F.4
  • 15
    • 70449418439 scopus 로고    scopus 로고
    • Learning with kernels: support vector machines, regularization
    • Scholkopf B., Smola A. Learning with kernels: support vector machines, regularization. Optim. Beyond 2002, 98(3):781.
    • (2002) Optim. Beyond , vol.98 , Issue.3 , pp. 781
    • Scholkopf, B.1    Smola, A.2
  • 16
    • 84856491836 scopus 로고    scopus 로고
    • On-line principal component analysis with application to process modeling
    • Tang J., Yu W., Chai T., Zhao L. On-line principal component analysis with application to process modeling. Neurocomputing 2012, 82:167-178.
    • (2012) Neurocomputing , vol.82 , pp. 167-178
    • Tang, J.1    Yu, W.2    Chai, T.3    Zhao, L.4
  • 17
    • 84944416149 scopus 로고    scopus 로고
    • Incremental singular value decomposition of uncertain data with missing values
    • Brand M. Incremental singular value decomposition of uncertain data with missing values. Lect. Notes Comput. Sci. 2002, 707-720.
    • (2002) Lect. Notes Comput. Sci. , pp. 707-720
    • Brand, M.1
  • 18
    • 84863151045 scopus 로고    scopus 로고
    • Dynamic processes monitoring using recursive kernel principal component analysis
    • Zhang Y., Li S., Teng Y. Dynamic processes monitoring using recursive kernel principal component analysis. Chem. Eng. Sci. 2012, 72:78-86.
    • (2012) Chem. Eng. Sci. , vol.72 , pp. 78-86
    • Zhang, Y.1    Li, S.2    Teng, Y.3
  • 19
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M., Duin R.P. Support vector data description. Mach. Learn. 2004, 54(1):45-66.
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 20
    • 79957530145 scopus 로고    scopus 로고
    • Selecting training points for one-class support vector machines
    • Li Y. Selecting training points for one-class support vector machines. Pattern Recognit. Lett. 2011, 32(11):1517-1522.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.11 , pp. 1517-1522
    • Li, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.