-
1
-
-
84875952239
-
Modeling and monitoring for handling nonlinear dynamic processes
-
Zhang Y., An J., Li Z., Wang H. Modeling and monitoring for handling nonlinear dynamic processes. Inf. Sci. 2013, 235:97-105.
-
(2013)
Inf. Sci.
, vol.235
, pp. 97-105
-
-
Zhang, Y.1
An, J.2
Li, Z.3
Wang, H.4
-
2
-
-
84862799924
-
A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
-
Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J. Process Control 2012, 22(4):778-788.
-
(2012)
J. Process Control
, vol.22
, Issue.4
, pp. 778-788
-
-
Yu, J.1
-
3
-
-
84860523095
-
Fault detection in dynamic processes using a simplified monitoring-specific cva state space modelling approach
-
Stubbs S., Zhang J., Morris J. Fault detection in dynamic processes using a simplified monitoring-specific cva state space modelling approach. Comput. Chem. Eng. 2012, 41:77-87.
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 77-87
-
-
Stubbs, S.1
Zhang, J.2
Morris, J.3
-
4
-
-
84865568980
-
Improved multi-scale kernel principal component analysis and its application for fault detection
-
Zhang Y., Li S., Hu Z. Improved multi-scale kernel principal component analysis and its application for fault detection. Chem. Eng. Res. Des. 2012, 90(9):1271-1280.
-
(2012)
Chem. Eng. Res. Des.
, vol.90
, Issue.9
, pp. 1271-1280
-
-
Zhang, Y.1
Li, S.2
Hu, Z.3
-
5
-
-
63249084878
-
Improved kernel pca-based monitoring approach for nonlinear processes
-
Ge Z., Yang C., Song Z. Improved kernel pca-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 2009, 64(9):2245-2255.
-
(2009)
Chem. Eng. Sci.
, vol.64
, Issue.9
, pp. 2245-2255
-
-
Ge, Z.1
Yang, C.2
Song, Z.3
-
6
-
-
78449282926
-
Kernel generalization of ppca for nonlinear probabilistic monitoring
-
Ge Z., Song Z. Kernel generalization of ppca for nonlinear probabilistic monitoring. Ind. Eng. Chem. Res. 2010, 49(22):11832-11836.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, Issue.22
, pp. 11832-11836
-
-
Ge, Z.1
Song, Z.2
-
7
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
Ge Z., Song Z. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng. Pract. 2008, 16(12):1427-1437.
-
(2008)
Control Eng. Pract.
, vol.16
, Issue.12
, pp. 1427-1437
-
-
Ge, Z.1
Song, Z.2
-
8
-
-
73749084616
-
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes
-
Maestri M., Farall A., Groisman P., Cassanello M., Horowitz G. A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes. Computers & chemical engineering 2010, 34(2):223-231.
-
(2010)
Computers & chemical engineering
, vol.34
, Issue.2
, pp. 223-231
-
-
Maestri, M.1
Farall, A.2
Groisman, P.3
Cassanello, M.4
Horowitz, G.5
-
9
-
-
0029709519
-
Validation and verification of continuous plants operating modes using multivariate statistical methods
-
Zullo L. Validation and verification of continuous plants operating modes using multivariate statistical methods. Comput. Chem. Eng. 1996, 20:S683-S688.
-
(1996)
Comput. Chem. Eng.
, vol.20
, pp. S683-S688
-
-
Zullo, L.1
-
10
-
-
0032686509
-
Real-time monitoring for a process with multiple operating modes
-
Hwang D.-H., Han C. Real-time monitoring for a process with multiple operating modes. Control Eng. Pract. 1999, 7(7):891-902.
-
(1999)
Control Eng. Pract.
, vol.7
, Issue.7
, pp. 891-902
-
-
Hwang, D.-H.1
Han, C.2
-
11
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54(7):1811-1829.
-
(2008)
AIChE J.
, vol.54
, Issue.7
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
12
-
-
0034282081
-
Ethylene compressor monitoring using model-based pca
-
Rotem Y., Wachs A., Lewin D. Ethylene compressor monitoring using model-based pca. AIChE J. 2000, 46(9):1825-1836.
-
(2000)
AIChE J.
, vol.46
, Issue.9
, pp. 1825-1836
-
-
Rotem, Y.1
Wachs, A.2
Lewin, D.3
-
13
-
-
33947430572
-
Uncertain fuzzy clustering. interval type-2 fuzzy approach to c-means
-
Hwang C., Rhee F.-H. Uncertain fuzzy clustering. interval type-2 fuzzy approach to c-means. IEEE Trans. Fuzzy Syst. 2007, 15(1):107-120.
-
(2007)
IEEE Trans. Fuzzy Syst.
, vol.15
, Issue.1
, pp. 107-120
-
-
Hwang, C.1
Rhee, F.-H.2
-
14
-
-
84888049977
-
A novel method for detecting processes with multi-state modes
-
Wang X., Wang X., Wang Z., Qian F. A novel method for detecting processes with multi-state modes. Control Eng. Pract. 2013, 21(12):1788-1794.
-
(2013)
Control Eng. Pract.
, vol.21
, Issue.12
, pp. 1788-1794
-
-
Wang, X.1
Wang, X.2
Wang, Z.3
Qian, F.4
-
15
-
-
70449418439
-
Learning with kernels: support vector machines, regularization
-
Scholkopf B., Smola A. Learning with kernels: support vector machines, regularization. Optim. Beyond 2002, 98(3):781.
-
(2002)
Optim. Beyond
, vol.98
, Issue.3
, pp. 781
-
-
Scholkopf, B.1
Smola, A.2
-
16
-
-
84856491836
-
On-line principal component analysis with application to process modeling
-
Tang J., Yu W., Chai T., Zhao L. On-line principal component analysis with application to process modeling. Neurocomputing 2012, 82:167-178.
-
(2012)
Neurocomputing
, vol.82
, pp. 167-178
-
-
Tang, J.1
Yu, W.2
Chai, T.3
Zhao, L.4
-
17
-
-
84944416149
-
Incremental singular value decomposition of uncertain data with missing values
-
Brand M. Incremental singular value decomposition of uncertain data with missing values. Lect. Notes Comput. Sci. 2002, 707-720.
-
(2002)
Lect. Notes Comput. Sci.
, pp. 707-720
-
-
Brand, M.1
-
18
-
-
84863151045
-
Dynamic processes monitoring using recursive kernel principal component analysis
-
Zhang Y., Li S., Teng Y. Dynamic processes monitoring using recursive kernel principal component analysis. Chem. Eng. Sci. 2012, 72:78-86.
-
(2012)
Chem. Eng. Sci.
, vol.72
, pp. 78-86
-
-
Zhang, Y.1
Li, S.2
Teng, Y.3
-
19
-
-
0942266514
-
Support vector data description
-
Tax D.M., Duin R.P. Support vector data description. Mach. Learn. 2004, 54(1):45-66.
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.1
Duin, R.P.2
-
20
-
-
79957530145
-
Selecting training points for one-class support vector machines
-
Li Y. Selecting training points for one-class support vector machines. Pattern Recognit. Lett. 2011, 32(11):1517-1522.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.11
, pp. 1517-1522
-
-
Li, Y.1
|