메뉴 건너뛰기




Volumn 80, Issue , 2015, Pages 185-201

A simple nonparametric car-following model driven by field data

Author keywords

Car following model; Data driven approach; Fundamental diagram; K nearest neighbour; Traffic oscillation

Indexed keywords

GRAPHIC METHODS; HIGHWAY ACCIDENTS; NEAREST NEIGHBOR SEARCH;

EID: 84937954462     PISSN: 01912615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trb.2015.07.010     Document Type: Article
Times cited : (166)

References (49)
  • 1
    • 44049092373 scopus 로고    scopus 로고
    • Freeway traffic oscillations and vehicle lane-change maneuvers
    • Elsevier, Amsterdam, R. Allsop, M. Bell, B. Heydecker (Eds.)
    • Ahn S., Cassidy M. Freeway traffic oscillations and vehicle lane-change maneuvers. 17th International Symposium of Transportation and Traffic Theory 2007, 691-710. Elsevier, Amsterdam. R. Allsop, M. Bell, B. Heydecker (Eds.).
    • (2007) 17th International Symposium of Transportation and Traffic Theory , pp. 691-710
    • Ahn, S.1    Cassidy, M.2
  • 2
    • 26344440071 scopus 로고
    • Dynamical model of traffic congestion and numerical simulation
    • Bando M., Hasebe K., Nakayama A. Dynamical model of traffic congestion and numerical simulation. Physical Review E 1995, 51:1035-1042.
    • (1995) Physical Review E , vol.51 , pp. 1035-1042
    • Bando, M.1    Hasebe, K.2    Nakayama, A.3
  • 6
    • 84890139149 scopus 로고    scopus 로고
    • On the periodicity of traffic oscillations and capacity drop: the role of driver characteristics
    • Chen D., Ahn S., Laval J., Zheng Z. On the periodicity of traffic oscillations and capacity drop: the role of driver characteristics. Transportation Research Part B 2014, 59:117-136.
    • (2014) Transportation Research Part B , vol.59 , pp. 117-136
    • Chen, D.1    Ahn, S.2    Laval, J.3    Zheng, Z.4
  • 7
    • 84867599758 scopus 로고    scopus 로고
    • Microscopic traffic hysteresis in traffic oscillations: a behavioral perspective
    • Chen D., Laval J., Ahn S., Zheng Z. Microscopic traffic hysteresis in traffic oscillations: a behavioral perspective. Transportation Research Part B 2012, 46:1440-1453.
    • (2012) Transportation Research Part B , vol.46 , pp. 1440-1453
    • Chen, D.1    Laval, J.2    Ahn, S.3    Zheng, Z.4
  • 8
    • 84860885389 scopus 로고    scopus 로고
    • A behavioral car-following model that captures traffic oscillations
    • Chen D., Laval J., Zheng Z., Ahn S. A behavioral car-following model that captures traffic oscillations. Transportation Research Part B 2012, 46:744-761.
    • (2012) Transportation Research Part B , vol.46 , pp. 744-761
    • Chen, D.1    Laval, J.2    Zheng, Z.3    Ahn, S.4
  • 9
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland W. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 1979, 74:829-836.
    • (1979) Journal of the American Statistical Association , vol.74 , pp. 829-836
    • Cleveland, W.1
  • 10
    • 84895521259 scopus 로고    scopus 로고
    • Artificial neural network models for car following: experimental analysis and calibration issues
    • Colombaroni C., Fusco G. Artificial neural network models for car following: experimental analysis and calibration issues. Journal of Intelligent Transportation Systems 2014, 18:5-16.
    • (2014) Journal of Intelligent Transportation Systems , vol.18 , pp. 5-16
    • Colombaroni, C.1    Fusco, G.2
  • 11
    • 0019558539 scopus 로고
    • A behavioural car-following model for computer simulation
    • Gipps P. A behavioural car-following model for computer simulation. Transportation Research Part B 1981, 15:105-111.
    • (1981) Transportation Research Part B , vol.15 , pp. 105-111
    • Gipps, P.1
  • 12
    • 0035470907 scopus 로고    scopus 로고
    • Traffic and related self-driven many-particle systems
    • Helbing D. Traffic and related self-driven many-particle systems. Reviews of Modern Physics 2001, 73:1067-1141.
    • (2001) Reviews of Modern Physics , vol.73 , pp. 1067-1141
    • Helbing, D.1
  • 15
    • 78650380322 scopus 로고    scopus 로고
    • Cellular automaton model with time gap dependent randomisation under Kerner's three-phase traffic theory
    • Jia B., Li X., Chen T., Jiang R., Gao Z. Cellular automaton model with time gap dependent randomisation under Kerner's three-phase traffic theory. Transportmetrica 2011, 7:127-140.
    • (2011) Transportmetrica , vol.7 , pp. 127-140
    • Jia, B.1    Li, X.2    Chen, T.3    Jiang, R.4    Gao, Z.5
  • 16
    • 4243317735 scopus 로고    scopus 로고
    • Full velocity difference model for a car-following theory
    • Jiang R., Wu Q., Zhu Z. Full velocity difference model for a car-following theory. Physical Review E 2001, 64:017101.
    • (2001) Physical Review E , vol.64 , pp. 017101
    • Jiang, R.1    Wu, Q.2    Zhu, Z.3
  • 18
    • 0013275973 scopus 로고    scopus 로고
    • Experimental features of self-organization in traffic flow
    • Kerner B. Experimental features of self-organization in traffic flow. Physical Review Letters 1998, 81:3797-3800.
    • (1998) Physical Review Letters , vol.81 , pp. 3797-3800
    • Kerner, B.1
  • 19
    • 63849322364 scopus 로고    scopus 로고
    • Calibrating car-following models by using trajectory data
    • Kesting A., Treiber M. Calibrating car-following models by using trajectory data. Transportation Research Record 2008, 148-156.
    • (2008) Transportation Research Record , pp. 148-156
    • Kesting, A.1    Treiber, M.2
  • 22
    • 84908232065 scopus 로고    scopus 로고
    • A parsimonious model for the formation of oscillations in car-following models
    • Laval J., Toth C.S., Zhou Y. A parsimonious model for the formation of oscillations in car-following models. Transportation Research Part B 2014, 70:228-238.
    • (2014) Transportation Research Part B , vol.70 , pp. 228-238
    • Laval, J.1    Toth, C.S.2    Zhou, Y.3
  • 24
    • 84894265606 scopus 로고    scopus 로고
    • Making NGSIM data usable for studies on traffic flow theory
    • Montanino M., Punzo V. Making NGSIM data usable for studies on traffic flow theory. Transportation Research Record 2013, 2390:99-111.
    • (2013) Transportation Research Record , vol.2390 , pp. 99-111
    • Montanino, M.1    Punzo, V.2
  • 25
    • 0036497630 scopus 로고    scopus 로고
    • A simplified car-following theory: a lower order model
    • Newell G. A simplified car-following theory: a lower order model. Transportation Research Part B 2002, 36:195-205.
    • (2002) Transportation Research Part B , vol.36 , pp. 195-205
    • Newell, G.1
  • 26
    • 63849241003 scopus 로고    scopus 로고
    • The Next Generation Simulation Program
    • NGSIM, 2006. The Next Generation Simulation Program.. http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
    • (2006)
  • 27
    • 70350066210 scopus 로고    scopus 로고
    • Exciting traffic jams: nonlinear phenomena behind traffic jam formation on highways
    • Orosz G., Wilson R., Szalai R. Exciting traffic jams: nonlinear phenomena behind traffic jam formation on highways. Physical Review E 2009, 80.
    • (2009) Physical Review E , vol.80
    • Orosz, G.1    Wilson, R.2    Szalai, R.3
  • 29
    • 36849121602 scopus 로고
    • An operational analysis of traffic dynamics
    • Pipes L. An operational analysis of traffic dynamics. Journal of Applied Physics 1953, 24:274-281.
    • (1953) Journal of Applied Physics , vol.24 , pp. 274-281
    • Pipes, L.1
  • 30
    • 80052720792 scopus 로고    scopus 로고
    • On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data
    • Punzo V., Borzacchiello M.T., Ciuffo B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data. Transportation Research Part C: Emerging Technologies 2011, 19:1243-1262.
    • (2011) Transportation Research Part C: Emerging Technologies , vol.19 , pp. 1243-1262
    • Punzo, V.1    Borzacchiello, M.T.2    Ciuffo, B.3
  • 31
    • 84900265510 scopus 로고    scopus 로고
    • Can results of car-following model calibration based on trajectory data be trusted?
    • Punzo V., Ciuffo B., Montanino M. Can results of car-following model calibration based on trajectory data be trusted?. Transportation Research Record 2012, 2315:99-111.
    • (2012) Transportation Research Record , vol.2315 , pp. 99-111
    • Punzo, V.1    Ciuffo, B.2    Montanino, M.3
  • 32
    • 84908594446 scopus 로고    scopus 로고
    • Incorporating human-factors in car-following models: a review of recent developments and research needs
    • Saifuzzaman M., Zheng Z. Incorporating human-factors in car-following models: a review of recent developments and research needs. Transportation Research Part C: Emerging Technologies 2014, 48:379-403.
    • (2014) Transportation Research Part C: Emerging Technologies , vol.48 , pp. 379-403
    • Saifuzzaman, M.1    Zheng, Z.2
  • 33
    • 38349130055 scopus 로고    scopus 로고
    • Empirical features of congested traffic states and their implications for traffic modeling
    • Schönhof M., Helbing D. Empirical features of congested traffic states and their implications for traffic modeling. Transportation Science 2007, 41:135-166.
    • (2007) Transportation Science , vol.41 , pp. 135-166
    • Schönhof, M.1    Helbing, D.2
  • 35
    • 63849130513 scopus 로고    scopus 로고
    • Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data
    • Thiemann C., Treiber M., Kesting A. Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data. Transportation Research Record 2008, 90-101.
    • (2008) Transportation Research Record , pp. 90-101
    • Thiemann, C.1    Treiber, M.2    Kesting, A.3
  • 36
    • 0032614061 scopus 로고    scopus 로고
    • Derivation, properties, and simulation of a gas-kinetic-based, non-local traffic model
    • Treiber M., Hennecke A., Helbing D. Derivation, properties, and simulation of a gas-kinetic-based, non-local traffic model. Physical Review E 1999, 59:239-253.
    • (1999) Physical Review E , vol.59 , pp. 239-253
    • Treiber, M.1    Hennecke, A.2    Helbing, D.3
  • 37
    • 0034239164 scopus 로고    scopus 로고
    • Congested traffic states in empirical observations and microscopic simulations
    • Treiber M., Hennecke A., Helbing D. Congested traffic states in empirical observations and microscopic simulations. Physical Review E 2000, 62:1805-1824.
    • (2000) Physical Review E , vol.62 , pp. 1805-1824
    • Treiber, M.1    Hennecke, A.2    Helbing, D.3
  • 40
    • 77954459171 scopus 로고    scopus 로고
    • Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts
    • Treiber M., Kesting A., Helbing D. Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transportation Research Part B 2010, 44:983-1000.
    • (2010) Transportation Research Part B , vol.44 , pp. 983-1000
    • Treiber, M.1    Kesting, A.2    Helbing, D.3
  • 42
    • 84868219514 scopus 로고    scopus 로고
    • Analysis of asymmetric driving behavior using a self-learning approach
    • Wei D., Liu H. Analysis of asymmetric driving behavior using a self-learning approach. Transportation Research Part B 2013, 47:1-14.
    • (2013) Transportation Research Part B , vol.47 , pp. 1-14
    • Wei, D.1    Liu, H.2
  • 45
    • 84880597745 scopus 로고    scopus 로고
    • Freeway travel time prediction using Takagi-Sugeno-Kang fuzzy neural network
    • Zhang Y., Ge H. Freeway travel time prediction using Takagi-Sugeno-Kang fuzzy neural network. Computer-Aided Civil and Infrastructure Engineering 2013, 28:594-603.
    • (2013) Computer-Aided Civil and Infrastructure Engineering , vol.28 , pp. 594-603
    • Zhang, Y.1    Ge, H.2
  • 46
    • 84885442896 scopus 로고    scopus 로고
    • Car-following behavior with instantaneous drivervehicle reaction delay: a neural-network-based methodology
    • Zheng J., Suzuki K., Fujita M. Car-following behavior with instantaneous drivervehicle reaction delay: a neural-network-based methodology. Transportation Research Part C: Emerging Technologies 2013, 36:339-351.
    • (2013) Transportation Research Part C: Emerging Technologies , vol.36 , pp. 339-351
    • Zheng, J.1    Suzuki, K.2    Fujita, M.3
  • 47
    • 78650812584 scopus 로고    scopus 로고
    • Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations
    • Zheng Z., Ahn S., Chen D., Laval J. Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations. Transportation Research Part B 2011, 45:372-384.
    • (2011) Transportation Research Part B , vol.45 , pp. 372-384
    • Zheng, Z.1    Ahn, S.2    Chen, D.3    Laval, J.4
  • 48
    • 83555176428 scopus 로고    scopus 로고
    • Freeway traffic oscillations: microscopic analysis of formations and propagations using Wavelet Transform
    • Zheng Z., Ahn S., Chen D., Laval J. Freeway traffic oscillations: microscopic analysis of formations and propagations using Wavelet Transform. Transportation Research Part B 2011, 45:1378-1388.
    • (2011) Transportation Research Part B , vol.45 , pp. 1378-1388
    • Zheng, Z.1    Ahn, S.2    Chen, D.3    Laval, J.4
  • 49
    • 84902547364 scopus 로고    scopus 로고
    • Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm
    • Zheng Z., Su D. Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transportation Research Part C: Emerging Technologies 2014, 43:143-157.
    • (2014) Transportation Research Part C: Emerging Technologies , vol.43 , pp. 143-157
    • Zheng, Z.1    Su, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.