메뉴 건너뛰기




Volumn 28, Issue 8, 2013, Pages 594-603

Freeway travel time prediction using takagi-sugeno-kang fuzzy neural network

Author keywords

[No Author keywords available]

Indexed keywords

BACK-PROPAGATION NEURAL NETWORKS; FUZZY LOGIC SYSTEM; HOUSTON , TEXAS; ONLINE COMPUTING; PREDICTION PERFORMANCE; TAKAGI-SUGENO-KANG FUZZY NEURAL NETWORKS; TIME SERIES MODELS; TRAVEL TIME PREDICTION;

EID: 84880597745     PISSN: 10939687     EISSN: 14678667     Source Type: Journal    
DOI: 10.1111/mice.12014     Document Type: Article
Times cited : (50)

References (35)
  • 1
    • 0141454753 scopus 로고    scopus 로고
    • Neuro-fuzzy logic model for freeway work zone capacity estimation
    • Adeli, H. & Jiang, X. (2003), Neuro-fuzzy logic model for freeway work zone capacity estimation, Journal of Transportation Engineering, 129(5), 484-93.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.5 , pp. 484-493
    • Adeli, H.1    Jiang, X.2
  • 4
    • 79958760673 scopus 로고    scopus 로고
    • Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks
    • Bhaskar, A., Chung, E. & Dumont, A. G. (2011), Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks, Computer-Aided Civil and Infrastructure Engineering, 26(6), 433-50.
    • (2011) Computer-Aided Civil and Infrastructure Engineering , vol.26 , Issue.6 , pp. 433-450
    • Bhaskar, A.1    Chung, E.2    Dumont, A.G.3
  • 5
    • 84864843693 scopus 로고    scopus 로고
    • Fuzzy representation of pavement condition for efficient pavement management
    • Bianchini, A. (2012), Fuzzy representation of pavement condition for efficient pavement management, Computer-Aided Civil and Infrastructure Engineering, 27(8), 608-19.
    • (2012) Computer-Aided Civil and Infrastructure Engineering , vol.27 , Issue.8 , pp. 608-619
    • Bianchini, A.1
  • 6
    • 33646817890 scopus 로고    scopus 로고
    • Effect of information quality on compliance behavior of commuters under real-time traffic information
    • National Academies Press, Washington DC, USA.
    • Chen, P. S. T., Srinivasan, K. K., Mahmassani, H. S. (1999), Effect of information quality on compliance behavior of commuters under real-time traffic information, in Proceedings of the 77th Transportation Research Board Annual Meeting, National Academies Press, Washington DC, USA.
    • (1999) Proceedings of the 77th Transportation Research Board Annual Meeting
    • Chen, P.S.T.1    Srinivasan, K.K.2    Mahmassani, H.S.3
  • 7
    • 0036719106 scopus 로고    scopus 로고
    • Dynamic bus arrival time prediction with artificial neural network
    • Chien, S., Ding, Y. & Wei, C. (2002), Dynamic bus arrival time prediction with artificial neural network, Journal of Transportation Engineering, 128(5), 429-38.
    • (2002) Journal of Transportation Engineering , vol.128 , Issue.5 , pp. 429-438
    • Chien, S.1    Ding, Y.2    Wei, C.3
  • 8
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S. (1994), Fuzzy model identification based on cluster estimation, Journal of Intelligent & Fuzzy Systems, 2(3), 267-78.
    • (1994) Journal of Intelligent & Fuzzy Systems , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.1
  • 9
    • 0347526141 scopus 로고    scopus 로고
    • Neural network model for rapid forecasting of freeway link travel time
    • Dharia, A. & Adeli, H. (2003), Neural network model for rapid forecasting of freeway link travel time, Engineering Applications of Artificial Intelligence, 16(7-8), 607-13.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.7-8 , pp. 607-613
    • Dharia, A.1    Adeli, H.2
  • 10
    • 41849106525 scopus 로고    scopus 로고
    • Travel time prediction using a seasonal autoregressive integrated moving average time series model
    • Proceedings of the, Toronto, Canada, September
    • Guin, A. (2006), Travel time prediction using a seasonal autoregressive integrated moving average time series model, in Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference, Toronto, Canada, September 17-20.
    • (2006) 2006 IEEE Intelligent Transportation Systems Conference , pp. 17-20
    • Guin, A.1
  • 13
    • 84867528331 scopus 로고    scopus 로고
    • Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction
    • Hsiao, F. Y., Wang, S. S., Wang, W. C., Wen, C. P. & Yu, W. D. (2012), Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction, Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-81.
    • (2012) Computer-Aided Civil and Infrastructure Engineering , vol.27 , Issue.10 , pp. 764-781
    • Hsiao, F.Y.1    Wang, S.S.2    Wang, W.C.3    Wen, C.P.4    Yu, W.D.5
  • 15
    • 0036145931 scopus 로고    scopus 로고
    • Comparison of the fuzzy-wavelet RBFNN freeway incident detection model with the California Algorithm
    • Karim, A. & Adeli, H. (2002), Comparison of the fuzzy-wavelet RBFNN freeway incident detection model with the California Algorithm, Journal of Transportation Engineering, 128(1), 21-30.
    • (2002) Journal of Transportation Engineering , vol.128 , Issue.1 , pp. 21-30
    • Karim, A.1    Adeli, H.2
  • 17
    • 84880640810 scopus 로고    scopus 로고
    • Short-range travel time prediction using an artificial neural network
    • Proceedings of 9th World Congress on Intelligent Transport Systems, Chicago, Illinois, USA.
    • Krikke, R. (2002), Short-range travel time prediction using an artificial neural network, in Proceedings of 9th World Congress on Intelligent Transport Systems, Chicago, Illinois, USA.
    • (2002)
    • Krikke, R.1
  • 18
    • 57249106547 scopus 로고    scopus 로고
    • An improved adaptive exponential smoothing model for short-term travel time forecasting of urban arterial street
    • Li, Z., Yu, H., Liu, Y. & Liu, F. (2008), An improved adaptive exponential smoothing model for short-term travel time forecasting of urban arterial street, Acta Automatica Sinica, 34(11), 1404-9.
    • (2008) Acta Automatica Sinica , vol.34 , Issue.11 , pp. 1404-1409
    • Li, Z.1    Yu, H.2    Liu, Y.3    Liu, F.4
  • 19
    • 77949618052 scopus 로고    scopus 로고
    • A neural network model for travel time prediction
    • Proceedings of the IEEE International Conference Intelligent Computing and Intelligent Systems, Shanghai, China.
    • Liu, H., Zhang, K., He, R. & Li, J. (2009), A neural network model for travel time prediction, in Proceedings of the IEEE International Conference Intelligent Computing and Intelligent Systems, Shanghai, China.
    • (2009)
    • Liu, H.1    Zhang, K.2    He, R.3    Li, J.4
  • 20
    • 0025252927 scopus 로고
    • An algorithm for prediction of travel time using vehicle sensor data
    • Proceedings of the IEE 3rd International Conference on Road Traffic Control, London
    • Oda, T. (1990), An algorithm for prediction of travel time using vehicle sensor data, in Proceedings of the IEE 3rd International Conference on Road Traffic Control, London, pp. 40-4.
    • (1990) , pp. 40-44
    • Oda, T.1
  • 21
    • 4243560734 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel time using modular neural network, Transportation Research Record
    • No. 98-0743, TRB, National Research Council, Washington DC.
    • Park, D. & Rilett, R. (1998), Forecasting multiple-period freeway link travel time using modular neural network, Transportation Research Record, No. 98-0743, TRB, National Research Council, Washington DC.
    • (1998)
    • Park, D.1    Rilett, R.2
  • 22
    • 0032623401 scopus 로고    scopus 로고
    • Forecasting freeway link travel times with a multilayer feedforward neural network
    • Park, D. & Laurence, R. (1999), Forecasting freeway link travel times with a multilayer feedforward neural network. Computer-Aided Civil and Infrastructure Engineering, 14, 357-67.
    • (1999) Computer-Aided Civil and Infrastructure Engineering , vol.14 , pp. 357-367
    • Park, D.1    Laurence, R.2
  • 23
    • 77952651573 scopus 로고    scopus 로고
    • Application of fuzzy logic and neural networks for dynamic travel time estimation
    • Prasad, V. P. & Nelson, P. C. (1999), Application of fuzzy logic and neural networks for dynamic travel time estimation, International Transactions in Operational Research, 6, 145-60.
    • (1999) International Transactions in Operational Research , vol.6 , pp. 145-160
    • Prasad, V.P.1    Nelson, P.C.2
  • 24
    • 84880615570 scopus 로고    scopus 로고
    • Direct forecasting of freeway corridor travel times using spectral basis neural networks
    • Washington DC.
    • Rilett, L. & Park, D. (1999), Direct forecasting of freeway corridor travel times using spectral basis neural networks, Presented at the 78th TRB Annual Meeting (CD-ROM), Washington DC.
    • (1999) Presented at the 78th TRB Annual Meeting (CD-ROM)
    • Rilett, L.1    Park, D.2
  • 25
    • 0035400597 scopus 로고    scopus 로고
    • Enhancing neural network incident detection algorithms using wavelets
    • Samant, A. & Adeli, H. (2001), Enhancing neural network incident detection algorithms using wavelets, Computer-Aided Civil and Infrastructure Engineering, 16(4), 239-45.
    • (2001) Computer-Aided Civil and Infrastructure Engineering , vol.16 , Issue.4 , pp. 239-245
    • Samant, A.1    Adeli, H.2
  • 26
    • 56149116114 scopus 로고    scopus 로고
    • Arterial network travel time estimation using conditional independence graphs and state space neural networks
    • Proceedings of the 18th IASTED Conference on Modelling and Simulation, Montreal, Quebec, Canada.
    • Singh, A. & Abu-Lebdeh, G. (2007), Arterial network travel time estimation using conditional independence graphs and state space neural networks, in Proceedings of the 18th IASTED Conference on Modelling and Simulation, Montreal, Quebec, Canada.
    • (2007)
    • Singh, A.1    Abu-Lebdeh, G.2
  • 29
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi, T. & Sugeno, M. (1985), Fuzzy identification of systems and its applications to modeling and control. IEEE Trans actions on Systems, Man, and Cybernetics, 15(1), 116-32.
    • (1985) IEEE Trans actions on Systems, Man, and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 30
    • 33751077286 scopus 로고    scopus 로고
    • Reliable real-time framework for short-term freeway travel time prediction
    • Van Lint, J. W. C. (2006), Reliable real-time framework for short-term freeway travel time prediction. Journal of Transportation Engineering, 132(12), 921-32.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.12 , pp. 921-932
    • Van Lint, J.W.C.1
  • 31
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • Van Lint, J. W. C., Hoogendoorn, S. P. & Van Zuyle, H. J. (2005), Accurate freeway travel time prediction with state-space neural networks under missing data, Transportation Research Part C, 13, 347-69.
    • (2005) Transportation Research Part C , vol.13 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuyle, H.J.3
  • 34
    • 0033804871 scopus 로고    scopus 로고
    • Development and evaluation of a hybrid travel time forecasting model
    • You, J. & Kim, J. (2000), Development and evaluation of a hybrid travel time forecasting model. Transportation Research Part C 8, 231-56.
    • (2000) Transportation Research Part C , vol.8 , pp. 231-256
    • You, J.1    Kim, J.2
  • 35
    • 0042664086 scopus 로고    scopus 로고
    • Short-term travel time prediction
    • Zhang, X. & Rice, J. (2003), Short-term travel time prediction. Transportation Research Part C 11(3-4), 187-210.
    • (2003) Transportation Research Part C , vol.11 , Issue.3-4 , pp. 187-210
    • Zhang, X.1    Rice, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.