메뉴 건너뛰기




Volumn 146, Issue , 2015, Pages 503-511

Practical comparison of sparse methods for classification of Arabica and Robusta coffee species using near infrared hyperspectral imaging

Author keywords

Green coffee beans; HIS NIR spectroscopy; Hyperspectral imaging; Sparse methods; Variable selection

Indexed keywords

ARTICLE; COFFEA ARABICA; COFFEA CANEPHORA; COFFEE; DISCRIMINANT ANALYSIS; FOOD ANALYSIS; IMAGE ANALYSIS; INTERMETHOD COMPARISON; K NEAREST NEIGHBOR; MATHEMATICAL ANALYSIS; NEAR INFRARED SPECTROSCOPY; NONHUMAN; PARTIAL LEAST SQUARES REGRESSION; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; QUALITATIVE ANALYSIS; SENSITIVITY AND SPECIFICITY; SPECIES DIFFERENCE;

EID: 84937918622     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.07.010     Document Type: Article
Times cited : (85)

References (51)
  • 1
    • 35548953824 scopus 로고    scopus 로고
    • Hyperspectral imaging-an emerging process analytical tool for food quality and safety control
    • Gowen A.A., O'Donnell C., Cullen P.J., Downey G., Frias J.M. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18(12):590-598.
    • (2007) Trends Food Sci. Technol. , vol.18 , Issue.12 , pp. 590-598
    • Gowen, A.A.1    O'Donnell, C.2    Cullen, P.J.3    Downey, G.4    Frias, J.M.5
  • 3
    • 77955929919 scopus 로고    scopus 로고
    • Practical issues of hyperspectral imaging analysis of solid dosage forms
    • Amigo J.M. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem. 2010, 398(1):93-109.
    • (2010) Anal. Bioanal. Chem. , vol.398 , Issue.1 , pp. 93-109
    • Amigo, J.M.1
  • 4
    • 79960151553 scopus 로고    scopus 로고
    • Data handling in hyperspectral image analysis
    • Burger J., Gowen A. Data handling in hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2011, 108(1):13-22.
    • (2011) Chemom. Intell. Lab. Syst. , vol.108 , Issue.1 , pp. 13-22
    • Burger, J.1    Gowen, A.2
  • 5
    • 84867231183 scopus 로고    scopus 로고
    • Pre-processing of hyperspectral images. Essential steps before image analysis
    • Vidal M., Amigo J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst. 2012, 117:138-148.
    • (2012) Chemom. Intell. Lab. Syst. , vol.117 , pp. 138-148
    • Vidal, M.1    Amigo, J.M.2
  • 6
    • 84886752351 scopus 로고    scopus 로고
    • Handling large datasets of hyperspectral images: reducing data size without loss of useful information
    • Ferrari C., Foca G., Ulrici A. Handling large datasets of hyperspectral images: reducing data size without loss of useful information. Anal. Chim. Acta 2013, 802:29-39.
    • (2013) Anal. Chim. Acta , vol.802 , pp. 29-39
    • Ferrari, C.1    Foca, G.2    Ulrici, A.3
  • 8
    • 0033905297 scopus 로고    scopus 로고
    • Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy
    • Norgaard L., Saudland A., Wagner J., Nielsen J.P., Munck L., Engelsen S.B. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 2000, 54(3):413-419.
    • (2000) Appl. Spectrosc. , vol.54 , Issue.3 , pp. 413-419
    • Norgaard, L.1    Saudland, A.2    Wagner, J.3    Nielsen, J.P.4    Munck, L.5    Engelsen, S.B.6
  • 9
    • 18844432760 scopus 로고    scopus 로고
    • Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions
    • Leardi R., Norgaard L. Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions. J. Chemom. 2004, 18(11):486-497.
    • (2004) J. Chemom. , vol.18 , Issue.11 , pp. 486-497
    • Leardi, R.1    Norgaard, L.2
  • 10
    • 84876326409 scopus 로고    scopus 로고
    • Classification of pig fat samples from different subcutaneous layers by means of fast and nondestructive analytical techniques
    • Foca G., Salvo D., Cino A., Ferrari C., Lo Fiego D.P., Minelli G., Ulrici A. Classification of pig fat samples from different subcutaneous layers by means of fast and nondestructive analytical techniques. Food Res. Int. 2013, 52(1):185-197.
    • (2013) Food Res. Int. , vol.52 , Issue.1 , pp. 185-197
    • Foca, G.1    Salvo, D.2    Cino, A.3    Ferrari, C.4    Lo Fiego, D.P.5    Minelli, G.6    Ulrici, A.7
  • 11
    • 0033647286 scopus 로고    scopus 로고
    • Application of genetic algorithm-PLS for feature selection in spectral data sets
    • Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemom. 2000, 14(5-6):643-655.
    • (2000) J. Chemom. , vol.14 , Issue.5-6 , pp. 643-655
    • Leardi, R.1
  • 12
    • 1542469357 scopus 로고    scopus 로고
    • Application of wavelet transform to extract the relevant component from spectral data for multivariate calibration
    • Jouan-Rimbaud D., Walczak B., Poppi R.J., de Noord O.E., Massart D.L. Application of wavelet transform to extract the relevant component from spectral data for multivariate calibration. Anal. Chem. 1997, 69(21):4317-4323.
    • (1997) Anal. Chem. , vol.69 , Issue.21 , pp. 4317-4323
    • Jouan-Rimbaud, D.1    Walczak, B.2    Poppi, R.J.3    de Noord, O.E.4    Massart, D.L.5
  • 13
    • 0035948737 scopus 로고    scopus 로고
    • WPTER: wavelet packet transform for efficient pattern recognition of signals
    • Cocchi M., Seeber R., Ulrici A. WPTER: wavelet packet transform for efficient pattern recognition of signals. Chemom. Intell. Lab. Syst. 2001, 57(2):97-119.
    • (2001) Chemom. Intell. Lab. Syst. , vol.57 , Issue.2 , pp. 97-119
    • Cocchi, M.1    Seeber, R.2    Ulrici, A.3
  • 14
    • 84862556734 scopus 로고    scopus 로고
    • Fast sparse regression and classification
    • Friedman J.H. Fast sparse regression and classification. Int. J. Forecast. 2012, 28(3):722-738.
    • (2012) Int. J. Forecast. , vol.28 , Issue.3 , pp. 722-738
    • Friedman, J.H.1
  • 15
    • 60849113429 scopus 로고    scopus 로고
    • Sparse canonical methods for biological data integration: application to a cross-platform study
    • Lê Cao K.A., Martin P.G., Robert-Granié C., Besse P. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC bioinformatics 2009, 10(1):34.
    • (2009) BMC bioinformatics , vol.10 , Issue.1 , pp. 34
    • Lê Cao, K.A.1    Martin, P.G.2    Robert-Granié, C.3    Besse, P.4
  • 16
    • 80054949794 scopus 로고    scopus 로고
    • Sparse non-negative generalized PCA with applications to metabolomics
    • Allen G.I., Maletić-Savatić M. Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics 2011, 27(21):3029-3035.
    • (2011) Bioinformatics , vol.27 , Issue.21 , pp. 3029-3035
    • Allen, G.I.1    Maletić-Savatić, M.2
  • 17
    • 84858980689 scopus 로고    scopus 로고
    • A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle
    • Colombani C., Croiseau P., Fritz S., Guillaume F., Legarra A., Ducrocq V., Robert-Granié C. A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle. J. Dairy Sci. 2012, 95(4):2120-2131.
    • (2012) J. Dairy Sci. , vol.95 , Issue.4 , pp. 2120-2131
    • Colombani, C.1    Croiseau, P.2    Fritz, S.3    Guillaume, F.4    Legarra, A.5    Ducrocq, V.6    Robert-Granié, C.7
  • 19
    • 84958532458 scopus 로고    scopus 로고
    • Discrimination of the white wine based on sparse principal component analysis and support vector machine
    • Wang R., Zeng W., Ming J. Discrimination of the white wine based on sparse principal component analysis and support vector machine. Computer Engineering and Networking 2014, 695-702.
    • (2014) Computer Engineering and Networking , pp. 695-702
    • Wang, R.1    Zeng, W.2    Ming, J.3
  • 20
    • 79951730835 scopus 로고    scopus 로고
    • Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region
    • Kunz M.R., Ottaway J., Kalivas J.H., Georgiou C.A., Mousdis G.A. Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region. J. Agric. Food Chem. 2011, 59(4):1051-1057.
    • (2011) J. Agric. Food Chem. , vol.59 , Issue.4 , pp. 1051-1057
    • Kunz, M.R.1    Ottaway, J.2    Kalivas, J.H.3    Georgiou, C.A.4    Mousdis, G.A.5
  • 21
    • 84858746662 scopus 로고    scopus 로고
    • Review of sparse methods in regression and classification with application to chemometrics
    • Filzmoser P., Gschwandtner M., Todorov V. Review of sparse methods in regression and classification with application to chemometrics. J. Chemom. 2012, 26:42-51.
    • (2012) J. Chemom. , vol.26 , pp. 42-51
    • Filzmoser, P.1    Gschwandtner, M.2    Todorov, V.3
  • 22
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten D.M., Tibshirani R., Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Bio-statistics 2009, 10(3):515-534.
    • (2009) Bio-statistics , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 23
    • 78650059908 scopus 로고    scopus 로고
    • Biclustering via sparse singular value de-composition
    • Lee M., Shen H., Huang J.Z., Marron J.S. Biclustering via sparse singular value de-composition. Biometrics 2010, 66:1087-1095.
    • (2010) Biometrics , vol.66 , pp. 1087-1095
    • Lee, M.1    Shen, H.2    Huang, J.Z.3    Marron, J.S.4
  • 26
    • 0141941674 scopus 로고    scopus 로고
    • A modified principal component technique based on the LASSO
    • Jolliffe I.T., Trendafilov N.T., Uddin M. A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 2003, 12(3):531-547.
    • (2003) J. Comput. Graph. Stat. , vol.12 , Issue.3 , pp. 531-547
    • Jolliffe, I.T.1    Trendafilov, N.T.2    Uddin, M.3
  • 27
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • Shen H., Huang J.Z. Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 2008, 99(6):1015-1034.
    • (2008) J. Multivar. Anal. , vol.99 , Issue.6 , pp. 1015-1034
    • Shen, H.1    Huang, J.Z.2
  • 28
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • Chun H., Keleş S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B (Stat Methodol.) 2010, 72(1):3-25.
    • (2010) J. R. Stat. Soc. Ser. B (Stat Methodol.) , vol.72 , Issue.1 , pp. 3-25
    • Chun, H.1    Keleş, S.2
  • 30
    • 79959258968 scopus 로고    scopus 로고
    • Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems
    • Lê Cao K.A., Boitard S., Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC bioinformatics 2011, 12(1):253-269.
    • (2011) BMC bioinformatics , vol.12 , Issue.1 , pp. 253-269
    • Lê Cao, K.A.1    Boitard, S.2    Besse, P.3
  • 32
    • 84920667207 scopus 로고    scopus 로고
    • Does simultaneous variable selection and dimension reduction improve the classification of pinus forest species?
    • Peerbhay K., Mutanga O., Ismail R. Does simultaneous variable selection and dimension reduction improve the classification of pinus forest species?. J. Appl. Remote Sens. 2014, 8(1):085194. 10.1117/1.JRS.8.085194.
    • (2014) J. Appl. Remote Sens. , vol.8 , Issue.1 , pp. 085194
    • Peerbhay, K.1    Mutanga, O.2    Ismail, R.3
  • 33
    • 84868499444 scopus 로고    scopus 로고
    • A tutorial on the Lasso approach to sparse modeling
    • Rasmussen M.A., Bro R. A tutorial on the Lasso approach to sparse modeling. Chemom. Intell. Lab. Syst. 2012, 119:21-31.
    • (2012) Chemom. Intell. Lab. Syst. , vol.119 , pp. 21-31
    • Rasmussen, M.A.1    Bro, R.2
  • 34
    • 0032145056 scopus 로고    scopus 로고
    • Discrimination between arabica and robusta green coffee varieties according to their chemical composition
    • Martín M., Pablos F., González A. Discrimination between arabica and robusta green coffee varieties according to their chemical composition. Talanta 1998, 46:1259-1264.
    • (1998) Talanta , vol.46 , pp. 1259-1264
    • Martín, M.1    Pablos, F.2    González, A.3
  • 35
    • 84865770909 scopus 로고    scopus 로고
    • Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach
    • Santos J., Sarraguça M., Rangel A., Lopes J. Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach. Food Chem. 2012, 135:1828-1835.
    • (2012) Food Chem. , vol.135 , pp. 1828-1835
    • Santos, J.1    Sarraguça, M.2    Rangel, A.3    Lopes, J.4
  • 36
    • 33750178545 scopus 로고    scopus 로고
    • Transfer of multivariate classification models between laboratory and process near-infrared spectrometers for the discrimination of green arabica and robusta coffee beans
    • Myles A.J., Zimmerman T.A., Brown S.D. Transfer of multivariate classification models between laboratory and process near-infrared spectrometers for the discrimination of green arabica and robusta coffee beans. Appl. Spectrosc. 2006, 60:1198-1203.
    • (2006) Appl. Spectrosc. , vol.60 , pp. 1198-1203
    • Myles, A.J.1    Zimmerman, T.A.2    Brown, S.D.3
  • 37
    • 2442715196 scopus 로고    scopus 로고
    • An evaluation of orthogonal signal correction methods for the characterisation of arabica and robusta coffee varieties by NIRS
    • Esteban-Di{dotless}ez I., González-Sáiz J.M., Pizarro C. An evaluation of orthogonal signal correction methods for the characterisation of arabica and robusta coffee varieties by NIRS. Anal. Chim. Acta 2004, 514:57-67.
    • (2004) Anal. Chim. Acta , vol.514 , pp. 57-67
    • Esteban-Diez, I.1    González-Sáiz, J.M.2    Pizarro, C.3
  • 42
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., Hart P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13:21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 44
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirami R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 1996, 58:267-288.
    • (1996) J. R. Stat. Soc. , vol.58 , pp. 267-288
    • Tibshirami, R.1
  • 45
    • 85151711359 scopus 로고
    • A theoretical foundation for the PLS algorithm
    • Lorber A., Wangen L., Kowalski B. A theoretical foundation for the PLS algorithm. J. Chemom. 1987, 1:19-31.
    • (1987) J. Chemom. , vol.1 , pp. 19-31
    • Lorber, A.1    Wangen, L.2    Kowalski, B.3
  • 46
    • 33947120689 scopus 로고    scopus 로고
    • Hyperspectral NIR image regression part II: dataset preprocessing diagnostics
    • Burger J., Geladi P. Hyperspectral NIR image regression part II: dataset preprocessing diagnostics. J. Chemom. 2006, 20:106-119.
    • (2006) J. Chemom. , vol.20 , pp. 106-119
    • Burger, J.1    Geladi, P.2
  • 47
    • 32444451010 scopus 로고    scopus 로고
    • Hyperspectral NIR image regression part I: calibration and correction
    • Burger J., Geladi P. Hyperspectral NIR image regression part I: calibration and correction. J. Chemom. 2005, 19:355-363.
    • (2005) J. Chemom. , vol.19 , pp. 355-363
    • Burger, J.1    Geladi, P.2
  • 48
    • 84873554197 scopus 로고    scopus 로고
    • Efficient chemometric strategies for PET-PLA discrimination in recycling plants using hyperspectral imaging
    • Ulrici A., Serranti S., Ferrari C., Cesare D., Foca G., Bonifazi G. Efficient chemometric strategies for PET-PLA discrimination in recycling plants using hyperspectral imaging. Chemom. Intell. Lab. Syst. 2013, 122:31-39.
    • (2013) Chemom. Intell. Lab. Syst. , vol.122 , pp. 31-39
    • Ulrici, A.1    Serranti, S.2    Ferrari, C.3    Cesare, D.4    Foca, G.5    Bonifazi, G.6
  • 50
    • 84922435378 scopus 로고    scopus 로고
    • Data size reduction strategy for the classification of breath and air samples using multicapillary column-ion mobility spectrometry
    • Szymanska E., Brodrick E., Williams M., Davies A.N., Van Manen H.J., Buydens L.C.M. Data size reduction strategy for the classification of breath and air samples using multicapillary column-ion mobility spectrometry. Anal. Chem. 2015, 87(2):869-875.
    • (2015) Anal. Chem. , vol.87 , Issue.2 , pp. 869-875
    • Szymanska, E.1    Brodrick, E.2    Williams, M.3    Davies, A.N.4    Van Manen, H.J.5    Buydens, L.C.M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.