메뉴 건너뛰기




Volumn 122, Issue , 2013, Pages 65-77

Comparison of Sparse and Jack-knife partial least squares regression methods for variable selection

Author keywords

Cross model validation; Jack knife PLSR; Perturbation parameter; Sparse PLSR

Indexed keywords

ARTICLE; COMPARATIVE STUDY; DATA ANALYSIS; GENOMICS; INFRARED SPECTROSCOPY; INTERMETHOD COMPARISON; JACK-KNIFE PARTIAL LEAST SQUARES REGRESSION; MATHEMATICAL COMPUTING; PARTIAL LEAST SQUARES REGRESSION; PREDICTION; PRIORITY JOURNAL; SIMULATION; SPARSE PARTIAL LEAST SQUARES REGRESSION; STATISTICAL MODEL; STATISTICAL PARAMETERS; VALIDATION STUDY; VARIABLE SELECTION;

EID: 84873885030     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2012.12.005     Document Type: Article
Times cited : (33)

References (47)
  • 1
    • 0001877951 scopus 로고
    • Soft modeling: the basic design and some extensions
    • North-Holland, Amsterdam
    • Wold H. Soft modeling: the basic design and some extensions. Systems under indirect observation 1982, 1-53. North-Holland, Amsterdam.
    • (1982) Systems under indirect observation , pp. 1-53
    • Wold, H.1
  • 6
    • 84858746662 scopus 로고    scopus 로고
    • Review of sparse methods in regression and classification with application to chemometrics
    • Filzmoser P., Gschwandtner M., Todorov V. Review of sparse methods in regression and classification with application to chemometrics. Journal of Chemometrics 2012, 26:42-51.
    • (2012) Journal of Chemometrics , vol.26 , pp. 42-51
    • Filzmoser, P.1    Gschwandtner, M.2    Todorov, V.3
  • 7
    • 80053384284 scopus 로고    scopus 로고
    • Improved variable reduction in partial least squares modelling based on Predictive-Property-Ranked Variables and adaptation of partial least squares complexity
    • Andries J.P.M., Vander Heyden Y., Buydens L.M.C. Improved variable reduction in partial least squares modelling based on Predictive-Property-Ranked Variables and adaptation of partial least squares complexity. Analytica Chimica Acta 2011, 705:292-305.
    • (2011) Analytica Chimica Acta , vol.705 , pp. 292-305
    • Andries, J.P.M.1    Vander Heyden, Y.2    Buydens, L.M.C.3
  • 8
    • 78650649260 scopus 로고    scopus 로고
    • Variable selection in regression-a tutorial
    • Andersen C.M., Bro R. Variable selection in regression-a tutorial. Journal of Chemometrics 2010, 24:728-737.
    • (2010) Journal of Chemometrics , vol.24 , pp. 728-737
    • Andersen, C.M.1    Bro, R.2
  • 10
    • 0033905297 scopus 로고    scopus 로고
    • Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy
    • Nørgaard L., Saudland A., Wagner J., Nielsen J.P., Munck L., Engelsen S.B. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy 2000, 54:413-419.
    • (2000) Applied Spectroscopy , vol.54 , pp. 413-419
    • Nørgaard, L.1    Saudland, A.2    Wagner, J.3    Nielsen, J.P.4    Munck, L.5    Engelsen, S.B.6
  • 12
    • 0033636234 scopus 로고    scopus 로고
    • Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR)
    • Martens H., Martens M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference 2000, 11:5-16.
    • (2000) Food Quality and Preference , vol.11 , pp. 5-16
    • Martens, H.1    Martens, M.2
  • 14
    • 0034398904 scopus 로고    scopus 로고
    • Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression
    • Westad F., Martens H. Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. Journal of Near Infrared Spectroscopy 2000, 8:117-124.
    • (2000) Journal of Near Infrared Spectroscopy , vol.8 , pp. 117-124
    • Westad, F.1    Martens, H.2
  • 15
    • 23044515101 scopus 로고    scopus 로고
    • A twist to partial least squares regression
    • Indahl U. A twist to partial least squares regression. Journal of Chemometrics 2005, 19:32-44.
    • (2005) Journal of Chemometrics , vol.19 , pp. 32-44
    • Indahl, U.1
  • 16
    • 53649086225 scopus 로고    scopus 로고
    • ST-PLS: a multi-directional nearest shrunken centroid type classifier via PLS
    • Sæbø S., Almøy T., Aarøe J., Aastveit A.H. ST-PLS: a multi-directional nearest shrunken centroid type classifier via PLS. Journal of Chemometrics 2008, 22:54-62.
    • (2008) Journal of Chemometrics , vol.22 , pp. 54-62
    • Sæbø, S.1    Almøy, T.2    Aarøe, J.3    Aastveit, A.H.4
  • 20
    • 84859018329 scopus 로고    scopus 로고
    • Camo Software, Oslo, Norway
    • The Unscrambler 2012, Camo Software, Oslo, Norway.
    • (2012) The Unscrambler
  • 23
    • 60849113429 scopus 로고    scopus 로고
    • Sparse canonical methods for biological data integration: application to a cross-platform study
    • Lê Cao K.A., Martin P.G.P., Robert-Granié C., Besse P. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics 2009, 10.
    • (2009) BMC Bioinformatics , vol.10
    • Lê Cao, K.A.1    Martin, P.G.P.2    Robert-Granié, C.3    Besse, P.4
  • 31
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • Shen H., Huang J.Z. Sparse principal component analysis via regularized low rank matrix approximation. Journal of Multivariate Analysis 2008, 99:1015-1034.
    • (2008) Journal of Multivariate Analysis , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.Z.2
  • 32
    • 50249088015 scopus 로고    scopus 로고
    • Penalized Partial Least Squares with applications to B-spline transformations and functional data
    • Krämer N., Boulesteix A.L., Tutz G. Penalized Partial Least Squares with applications to B-spline transformations and functional data. Chemometrics and Intelligent Laboratory Systems 2008, 94:60-69.
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.94 , pp. 60-69
    • Krämer, N.1    Boulesteix, A.L.2    Tutz, G.3
  • 33
    • 0012184060 scopus 로고    scopus 로고
    • Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case
    • Department of Statistics, University of Washington, Seattle
    • Wegelin J.A. Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case. Technical Report 371 2000, Department of Statistics, University of Washington, Seattle.
    • (2000) Technical Report 371
    • Wegelin, J.A.1
  • 38
    • 34250815103 scopus 로고    scopus 로고
    • Finding relevant spectral regions between spectroscopic techniques by use of cross model validation and partial least squares regression
    • Westad F., Afseth N.K., Bro R. Finding relevant spectral regions between spectroscopic techniques by use of cross model validation and partial least squares regression. Analytica Chimica Acta 2007, 595:323-327.
    • (2007) Analytica Chimica Acta , vol.595 , pp. 323-327
    • Westad, F.1    Afseth, N.K.2    Bro, R.3
  • 40
    • 0026351585 scopus 로고
    • Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy
    • Martens H., Stark E. Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 1991, 9:625-635.
    • (1991) Journal of Pharmaceutical and Biomedical Analysis , vol.9 , pp. 625-635
    • Martens, H.1    Stark, E.2
  • 41
    • 84882499261 scopus 로고    scopus 로고
    • Standard normal variate, multiplicative signal correction and extended multiplicative signal correction preprocessing in biospectroscopy
    • Elsevier, Oxford, D.B. Stephen, T. Romá, W. Beata (Eds.)
    • Kohler A., Zimonja M., Segtnan V., Martens H. Standard normal variate, multiplicative signal correction and extended multiplicative signal correction preprocessing in biospectroscopy. Comprehensive Chemometrics 2009, 139-162. Elsevier, Oxford. D.B. Stephen, T. Romá, W. Beata (Eds.).
    • (2009) Comprehensive Chemometrics , pp. 139-162
    • Kohler, A.1    Zimonja, M.2    Segtnan, V.3    Martens, H.4
  • 42
    • 84875379930 scopus 로고    scopus 로고
    • The Mathworks Inc., Natick, Massachusetts, USA
    • MATLAB 2010, The Mathworks Inc., Natick, Massachusetts, USA.
    • (2010) MATLAB
  • 43
    • 84868206061 scopus 로고    scopus 로고
    • Degrees of freedom estimation in principal component analysis and consensus principal component analysis
    • Hassani S., Martens H., Qannari E.M., Kohler A. Degrees of freedom estimation in principal component analysis and consensus principal component analysis. Chemometrics and Intelligent Laboratory Systems 2012, 118:246-259.
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.118 , pp. 246-259
    • Hassani, S.1    Martens, H.2    Qannari, E.M.3    Kohler, A.4
  • 46
    • 0042029595 scopus 로고    scopus 로고
    • Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin
    • Katla T., Naterstad K., Vancanneyt M., Swings J., Axelsson L. Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Applied and Environmental Microbiology 2003, 69:4431-4437.
    • (2003) Applied and Environmental Microbiology , vol.69 , pp. 4431-4437
    • Katla, T.1    Naterstad, K.2    Vancanneyt, M.3    Swings, J.4    Axelsson, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.