메뉴 건너뛰기




Volumn 108, Issue 1, 2011, Pages 13-22

Data handling in hyperspectral image analysis

Author keywords

Chemical imaging; Data reduction; Hypespectral; Image processing

Indexed keywords

ALGORITHM; ARTICLE; CHEMICAL ANALYSIS; COMPUTER ANALYSIS; COMPUTER MEMORY; DATA ANALYSIS SOFTWARE; DATA EXTRACTION; DATA SYNTHESIS; DIGITAL IMAGING; IMAGE ANALYSIS; IMAGE ENHANCEMENT; IMAGE PROCESSING; IMAGE QUALITY; IMAGING SYSTEM; INFORMATION PROCESSING; INFORMATION STORAGE; MATHEMATICAL COMPUTING; PRIORITY JOURNAL; SPECTROSCOPY; THREE DIMENSIONAL IMAGING;

EID: 79960151553     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2011.04.001     Document Type: Article
Times cited : (131)

References (50)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Landgrebe D. Hyperspectral image data analysis. IEEE Signal Proc. Mag. 2002, 1:17-18.
    • (2002) IEEE Signal Proc. Mag. , vol.1 , pp. 17-18
    • Landgrebe, D.1
  • 3
    • 85060036181 scopus 로고
    • Validity of the single processor approach to achieving large-scale computing capabilities
    • Amdahl G. Validity of the single processor approach to achieving large-scale computing capabilities. AFIPS Conference Proceedings 1967, 30:483-485.
    • (1967) AFIPS Conference Proceedings , vol.30 , pp. 483-485
    • Amdahl, G.1
  • 5
    • 79960174137 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011.
    • Date accessed: 13/1/2011. http://www.accelereyes.com/.
  • 7
    • 70450239667 scopus 로고    scopus 로고
    • Recent developments and future directions in parallel processing of remotely sensed hyperspectral images
    • Proceedings of 6th International Symposium on Image and Signal Processing and Analysis, 626-631 ISSN: 1845-5921; Print ISBN: 978-953-184-135-1
    • A. Plaza, Recent developments and future directions in parallel processing of remotely sensed hyperspectral images, Proceedings of 6th International Symposium on Image and Signal Processing and Analysis, (2009) 626-631 ISSN: 1845-5921; Print ISBN: 978-953-184-135-1.
    • (2009)
    • Plaza, A.1
  • 9
    • 79960196709 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011.
    • OpenCLStudio Date accessed: 13/1/2011. http://www.opencldev.com.
    • OpenCLStudio
  • 10
    • 79960157730 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011.
    • LAPACK Date accessed: 13/1/2011. http://www.netlib.org/lapack/.
    • LAPACK
  • 14
    • 48849089104 scopus 로고    scopus 로고
    • High-performance implementation of the level-3 BLAS
    • Goto K., Van De Geijn R. High-performance implementation of the level-3 BLAS. ACM Trans. Math. Softw. 2008, 35:1-14.
    • (2008) ACM Trans. Math. Softw. , vol.35 , pp. 1-14
    • Goto, K.1    Van De Geijn, R.2
  • 15
    • 79960172751 scopus 로고    scopus 로고
    • Intel MKL, Date accessed: 13/1/2011
    • Intel MKL Date accessed: 13/1/2011. http://software.intel.com/en-us/articles/intel-mkl/.
  • 16
    • 79960177581 scopus 로고    scopus 로고
    • AMD A.C.M.L., Date accessed: 13/1/2011
    • AMD A.C.M.L. Date accessed: 13/1/2011. http://developer.amd.com/cpu/Libraries/acml/Pages/default.aspx.
  • 17
    • 79960170446 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011, ENVI: ITT Visual Information Services
    • ENVI: ITT Visual Information Services Date accessed: 13/1/2011. http://www.ittvis.com/ProductServices/ENVI.aspx.
  • 18
    • 79960184232 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011, IDL: ITT Visual Information Services
    • IDL: ITT Visual Information Services Date accessed: 13/1/2011. http://www.ittvis.com/ProductServices/IDL.aspx.
  • 19
    • 79960185009 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011, Eigenvector
    • Eigenvector Date accessed: 13/1/2011. http://www.eigenvector.com/.
  • 20
    • 79960182318 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011
    • Umbio Date accessed: 13/1/2011. http://beta.umbio.com/Public%20files/News.aspx.
    • Umbio
  • 21
    • 79960153744 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011
    • BurgerMetrics Date accessed: 13/1/2011. http://www.burgermetrics.com/.
    • BurgerMetrics
  • 22
    • 79960173635 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011
    • ImageJ Date accessed: 13/1/2011. http://rsbweb.nih.gov/ij/.
    • ImageJ
  • 23
    • 79960171235 scopus 로고    scopus 로고
    • Date accessed: 13/1/2011
    • VTK Date accessed: 13/1/2011. http://www.vtk.org/.
    • VTK
  • 24
    • 79960184752 scopus 로고    scopus 로고
    • Exploration of virtual dimensionality
    • S.S. Shen, P.E. Lewis (Eds.) Hyperspectral Image Analysis. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, 623313-1-623313-12
    • Chang C. Exploration of virtual dimensionality. Proc. of SPIE 2006, Vol. 6233:623313-1-623313-12. S.S. Shen, P.E. Lewis (Eds.).
    • (2006) Proc. of SPIE , vol.6233
    • Chang, C.1
  • 27
    • 1842788069 scopus 로고    scopus 로고
    • Higher-dimensional wavelet transforms for hyperspectral data compression and feature recognition
    • M.S. Schmalz (Ed.) Mathematics of Data/Image Coding, Compression and Encryption VI with Applications
    • Scholl J.F., Dereniak E.L. Higher-dimensional wavelet transforms for hyperspectral data compression and feature recognition. Proceedings of SPIE 2003, Volume 5208:129-140. M.S. Schmalz (Ed.).
    • (2003) Proceedings of SPIE , vol.5208 , pp. 129-140
    • Scholl, J.F.1    Dereniak, E.L.2
  • 29
    • 12344306144 scopus 로고    scopus 로고
    • Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging
    • Liu Y., Chen Y., Wang C., Chan D., Kim M. Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Appl. Spectrosc. 2005, 59:78-85.
    • (2005) Appl. Spectrosc. , vol.59 , pp. 78-85
    • Liu, Y.1    Chen, Y.2    Wang, C.3    Chan, D.4    Kim, M.5
  • 31
    • 19044365005 scopus 로고    scopus 로고
    • Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion
    • Kim M., Lefcourt A., Chen Y., Tao Y. Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion. J. Food Eng. 2005, 71:85-91.
    • (2005) J. Food Eng. , vol.71 , pp. 85-91
    • Kim, M.1    Lefcourt, A.2    Chen, Y.3    Tao, Y.4
  • 32
    • 35548953824 scopus 로고    scopus 로고
    • Hyperspectral imaging - an emerging process analytical tool for food quality and safety control
    • Gowen A.A., O'Donnell C.P., Cullen P.J., Downey G., Frias J.M. Hyperspectral imaging - an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol. 2007, 18:590-598.
    • (2007) Trends Food Sci Technol. , vol.18 , pp. 590-598
    • Gowen, A.A.1    O'Donnell, C.P.2    Cullen, P.J.3    Downey, G.4    Frias, J.M.5
  • 33
    • 77955929919 scopus 로고    scopus 로고
    • Practical issues of hyperspectral imaging analysis of solid dosage forms
    • Amigo J.M. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem. 2010, 398:93-109.
    • (2010) Anal. Bioanal. Chem. , vol.398 , pp. 93-109
    • Amigo, J.M.1
  • 34
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901, 2:559-572.
    • (1901) Philos. Mag. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 36
    • 21244501676 scopus 로고    scopus 로고
    • Segmented principal component transform-principal component analysis
    • Barros A., Rutledge D. Segmented principal component transform-principal component analysis. Chemom. Intell. Lab. Syst. 2005, 78:125-137.
    • (2005) Chemom. Intell. Lab. Syst. , vol.78 , pp. 125-137
    • Barros, A.1    Rutledge, D.2
  • 37
    • 78649815530 scopus 로고    scopus 로고
    • Wavelet principal components analysis and its application to hyperspectral imagery
    • Gupta M., Jacobson N. Wavelet principal components analysis and its application to hyperspectral imagery. IEEE. International Conference on Image Processing 2006, 1585-1588.
    • (2006) IEEE. International Conference on Image Processing , pp. 1585-1588
    • Gupta, M.1    Jacobson, N.2
  • 40
    • 0347948486 scopus 로고    scopus 로고
    • Spectroscopic imaging and chemometrics: a powerful combination for global and local sample analysis
    • De Juan A., Tauler R., Dyson R., Marcolli C., Rault M., Maeder M. Spectroscopic imaging and chemometrics: a powerful combination for global and local sample analysis. Trends Anal. Chem. 2004, 23:70-79.
    • (2004) Trends Anal. Chem. , vol.23 , pp. 70-79
    • De Juan, A.1    Tauler, R.2    Dyson, R.3    Marcolli, C.4    Rault, M.5    Maeder, M.6
  • 41
    • 0035573431 scopus 로고    scopus 로고
    • Principal component analysis for compression of hyperspectral images
    • Lim S., Sohn K.H., Lee C. Principal component analysis for compression of hyperspectral images. Proc. IEEE IGARSS 2001, 97-99.
    • (2001) Proc. IEEE IGARSS , pp. 97-99
    • Lim, S.1    Sohn, K.H.2    Lee, C.3
  • 42
    • 78649815530 scopus 로고    scopus 로고
    • Wavelet principal components analysis and its application to hyperspectral imagery
    • Gupta M., Jacobson N. Wavelet principal components analysis and its application to hyperspectral imagery. IEEE. International Conference on Image Processing 2006, 1585-1588.
    • (2006) IEEE. International Conference on Image Processing , pp. 1585-1588
    • Gupta, M.1    Jacobson, N.2
  • 43
    • 33748659693 scopus 로고    scopus 로고
    • Hyperspectral image analysis using noise-adjusted principal component transform
    • Du Q., Raksuntorn N. Hyperspectral image analysis using noise-adjusted principal component transform. SPIE 2006, 6233:1-10.
    • (2006) SPIE , vol.6233 , pp. 1-10
    • Du, Q.1    Raksuntorn, N.2
  • 44
    • 0038444885 scopus 로고    scopus 로고
    • Comparison of principal components analysis and minimum noise fraction transformation for reducing the dimensionality of hyperspectral imagery
    • Chen C. Comparison of principal components analysis and minimum noise fraction transformation for reducing the dimensionality of hyperspectral imagery. Geog. Res. 2000, 33:163-178.
    • (2000) Geog. Res. , vol.33 , pp. 163-178
    • Chen, C.1
  • 45
    • 0034314457 scopus 로고    scopus 로고
    • Unsupervised hyperspectral image analysis with projection pursuit
    • Ifarraguerri A., Chang C. Unsupervised hyperspectral image analysis with projection pursuit. IEEE Trans. Geosci. Remote Sens. 2000, 38:2529-2538.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , pp. 2529-2538
    • Ifarraguerri, A.1    Chang, C.2
  • 46
    • 77951085620 scopus 로고    scopus 로고
    • Random projection experiments with chemometric data
    • Varmuza K., Filzmoser P., Liebmann B. Random projection experiments with chemometric data. J. Chemom. 2010, 24:209-217.
    • (2010) J. Chemom. , vol.24 , pp. 209-217
    • Varmuza, K.1    Filzmoser, P.2    Liebmann, B.3
  • 47
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed point algorithms for independent component analysis
    • Hyvarinen A. Fast and robust fixed point algorithms for independent component analysis. IEEE Trans. Neural Netw. 1999, 10:626-634.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 626-634
    • Hyvarinen, A.1
  • 50
    • 69649104337 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral images using kernel ICA
    • 7315
    • Khan A., Kim I., Kong S. Dimensionality reduction of hyperspectral images using kernel ICA. Proc. SPIE 2009, Vol. 7315.
    • (2009) Proc. SPIE
    • Khan, A.1    Kim, I.2    Kong, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.