메뉴 건너뛰기




Volumn 4, Issue January, 2014, Pages 3311-3319

Conditional random field autoencoders for unsupervised structured prediction

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84937844873     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (57)

References (47)
  • 1
    • 0002759539 scopus 로고
    • Unsupervised learning of multiple motifs in biopolymers using expectation maximization
    • T. L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine learning, 1995.
    • (1995) Machine Learning
    • Bailey, T.L.1    Elkan, C.2
  • 2
    • 80053165082 scopus 로고    scopus 로고
    • Alternating projections for learning with expectation constraints
    • K. Bellare, G. Druck, and A. McCallum. Alternating projections for learning with expectation constraints. In Proc. of UAI, 2009.
    • (2009) Proc. of UAI
    • Bellare, K.1    Druck, G.2    McCallum, A.3
  • 4
    • 84937824187 scopus 로고    scopus 로고
    • Discriminative word alignment with conditional random fields
    • P. Blunsom and T. Cohn. Discriminative word alignment with conditional random fields. In Proc. of Proceedings of ACL, 2006.
    • (2006) Proc. of Proceedings of ACL
    • Blunsom, P.1    Cohn, T.2
  • 7
    • 85086490822 scopus 로고    scopus 로고
    • CoNLL-X shared task on multilingual dependency parsing
    • S. Buchholz and E. Marsi. CoNLL-X shared task on multilingual dependency parsing. In CoNLL-X, 2006.
    • (2006) CoNLL-X
    • Buchholz, S.1    Marsi, E.2
  • 8
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proc. of ICML, 2008.
    • (2008) Proc. of ICML
    • Collobert, R.1    Weston, J.2
  • 11
    • 77956547444 scopus 로고    scopus 로고
    • High-performance semi-supervised learning using discriminatively constrained generative models
    • G. Druck and A. McCallum. High-performance semi-supervised learning using discriminatively constrained generative models. In Proc. of ICML, 2010.
    • (2010) Proc. of ICML
    • Druck, G.1    McCallum, A.2
  • 12
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 2011.
    • (2011) JMLR
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 15
    • 84914812809 scopus 로고    scopus 로고
    • A simple, fast, and effective reparameterization of IBM model 2
    • C. Dyer, V. Chahuneau, and N. A. Smith. A simple, fast, and effective reparameterization of IBM Model 2. In Proc. of NAACL, 2013.
    • (2013) Proc. of NAACL
    • Dyer, C.1    Chahuneau, V.2    Smith, N.A.3
  • 17
    • 84937856753 scopus 로고    scopus 로고
    • Parallel implementations of word alignment tool
    • Q. Gao and S. Vogel. Parallel implementations of word alignment tool. In Proc. of the ACL workshop, 2008.
    • (2008) Proc. of the ACL Workshop
    • Gao, Q.1    Vogel, S.2
  • 18
    • 70049102734 scopus 로고    scopus 로고
    • Prototype-driven learning for sequence models
    • A. Haghighi and D. Klein. Prototype-driven learning for sequence models. In Proc. of NAACLHLT, 2006.
    • (2006) Proc. of NAACLHLT
    • Haghighi, A.1    Klein, D.2
  • 20
    • 80053381171 scopus 로고    scopus 로고
    • Why doesn't EM find good HMM POS-taggers?
    • M. Johnson. Why doesn't EM find good HMM POS-taggers? In Proc. of EMNLP, 2007.
    • (2007) Proc. of EMNLP
    • Johnson, M.1
  • 21
    • 29344466697 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • D. Klein and C. D. Manning. Corpus-based induction of syntactic structure: Models of dependency and constituency. In Proc. of ACL, 2004.
    • (2004) Proc. of ACL
    • Klein, D.1    Manning, C.D.2
  • 24
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. of ICML, 2001.
    • (2001) Proc. of ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 27
    • 0032519353 scopus 로고    scopus 로고
    • Genemark hmm: New solutions for gene finding
    • A. V. Lukashin and M. Borodovsky. Genemark. hmm: new solutions for gene finding. Nucleic acids research, 26(4): 1107-1115, 1998.
    • (1998) Nucleic Acids Research , vol.26 , Issue.4 , pp. 1107-1115
    • Lukashin, A.V.1    Borodovsky, M.2
  • 28
    • 84867119745 scopus 로고
    • Tagging english text with a probabilistic model
    • B. Merialdo. Tagging english text with a probabilistic model. In Comp. Ling., 1994.
    • (1994) Comp. Ling.
    • Merialdo, B.1
  • 30
    • 84867118996 scopus 로고    scopus 로고
    • A fast and simple algorithm for training neural probabilistic language models
    • A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural probabilistic language models. In Proc. of ICML, 2012.
    • (2012) Proc. of ICML
    • Mnih, A.1    Teh, Y.W.2
  • 32
    • 0042879653 scopus 로고    scopus 로고
    • A systematic comparison of various statistical alignment models
    • F. Och and H. Ney. A systematic comparison of various statistical alignment models. Computational Linguistics, 2003.
    • (2003) Computational Linguistics
    • Och, F.1    Ney, H.2
  • 33
    • 85133336275 scopus 로고    scopus 로고
    • Bleu: A method for automatic evaluation of machine translation
    • K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In Proc. of ACL, 2002.
    • (2002) Proc. of ACL
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.-J.4
  • 35
    • 80053355330 scopus 로고    scopus 로고
    • Joint unsupervised coreference resolution with Markov logic
    • H. Poon and P. Domingos. Joint unsupervised coreference resolution with Markov logic. In Proc. of EMNLP, 2008.
    • (2008) Proc. of EMNLP
    • Poon, H.1    Domingos, P.2
  • 37
    • 80053369934 scopus 로고    scopus 로고
    • V-measure: A conditional entropy-based external cluster evaluation measure
    • A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external cluster evaluation measure. In EMNLP-CoNLL, 2007.
    • (2007) EMNLP-CoNLL
    • Rosenberg, A.1    Hirschberg, J.2
  • 38
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • N. A. Smith and J. Eisner. Contrastive estimation: Training log-linear models on unlabeled data. In Proc. of ACL, 2005.
    • (2005) Proc. of ACL
    • Smith, N.A.1    Eisner, J.2
  • 39
    • 80053234189 scopus 로고    scopus 로고
    • Learning continuous phrase representations and syntactic parsing with recursive neural networks
    • R. Socher, C. D. Manning, and A. Y. Ng. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In NIPS workshop, 2010.
    • (2010) NIPS Workshop
    • Socher, R.1    Manning, C.D.2    Ng, A.Y.3
  • 40
    • 84883148756 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In Proc. of AISTATS, 2011.
    • (2011) Proc. of AISTATS
    • Stoyanov, V.1    Ropson, A.2    Eisner, J.3
  • 41
    • 84859884966 scopus 로고    scopus 로고
    • Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data
    • J. Suzuki and H. Isozaki. Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. In Proc. of ACL, 2008.
    • (2008) Proc. of ACL
    • Suzuki, J.1    Isozaki, H.2
  • 42
  • 45
    • 0004339720 scopus 로고    scopus 로고
    • Hmm-based word alignment in statistical translation
    • S. Vogel, H. Ney, and C. Tillmann. Hmm-based word alignment in statistical translation. In Proc. of COLING, 1996.
    • (1996) Proc. of COLING
    • Vogel, S.1    Ney, H.2    Tillmann, C.3
  • 47
    • 85060905667 scopus 로고
    • Recognizing human action in time-sequential images using hidden Markov model
    • IEEE
    • J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential images using hidden Markov model. In Proc. of CVPR, pages 379-385. IEEE, 1992.
    • (1992) Proc. of CVPR , pp. 379-385
    • Yamato, J.1    Ohya, J.2    Ishii, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.