-
3
-
-
57749120009
-
Guiding semi-supervision with constraint-driven learning
-
Chang, M., Ratinov, L. and Roth, D. Guiding semi-supervision with constraint-driven learning. In Proc. of Meeting of Assoc. for Computational Linguistics, pp. 280-287, 2007.
-
(2007)
Proc. of Meeting of Assoc. for Computational Linguistics
, pp. 280-287
-
-
Chang, M.1
Ratinov, L.2
Roth, D.3
-
4
-
-
34547975610
-
Risks of semi-supervised learning: How unlabeled data can degrade performance of generative classifiers
-
MIT Press
-
Cozman, F. and Cohen, I. Risks of semi-supervised learning: How unlabeled data can degrade performance of generative classifiers. In Semi-Supervised Learning. MIT Press, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Cozman, F.1
Cohen, I.2
-
5
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical SocietySer. B, 39(1):1-38, 1977.
-
(1977)
Journal of the Royal Statistical SocietySer. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
7
-
-
77956541635
-
Posterior regularization for structured latent variable models
-
Ganchev, K., Graça, J., Gillenwater, J. and Taskar, B. Posterior regularization for structured latent variable models. Technical Report MS-CIS-09-16, University of Pennsylvania Department of Computer and Information Science, 2009.
-
(2009)
Technical Report MS-CIS-09-16, University of Pennsylvania Department of Computer and Information Science
-
-
Ganchev, K.1
Graça, J.2
Gillenwater, J.3
Taskar, B.4
-
9
-
-
80053551637
-
Simple semi-supervised dependency parsing
-
Koo, T., Carreras, X., and Collins, M. Simple semi-supervised dependency parsing. In Proc. of Meeting of Assoc. for Computational Linguistics, pp. 595-603, 2008.
-
(2008)
Proc. of Meeting of Assoc. for Computational Linguistics
, pp. 595-603
-
-
Koo, T.1
Carreras, X.2
Collins, M.3
-
10
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, J., McCallum, A., and Pereira, F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. Int'l. Conf. on Machine Learning, pp. 282-289, 2001.
-
(2001)
Proc. Int'l. Conf. on Machine Learning
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
11
-
-
33845597672
-
Principled hybrids of generative and discriminative models
-
Lasserre, J. A., Bishop, C. M., and Minka, T. P. Principled hybrids of generative and discriminative models. In Conf. on Computer Vision and Pattern Recognition, pp. 87-94, 2006.
-
(2006)
Conf. on Computer Vision and Pattern Recognition
, pp. 87-94
-
-
Lasserre, J.A.1
Bishop, C.M.2
Minka, T.P.3
-
12
-
-
71149098112
-
Learning from measurements in exponential families
-
Liang, P., Jordan, M. I. and Klein, D. Learning from measurements in exponential families. In Proc. Int'l. Conf. on Machine Learning, pp. 641-648, 2009.
-
(2009)
Proc. Int'l. Conf. on Machine Learning
, pp. 641-648
-
-
Liang, P.1
Jordan, M.I.2
Klein, D.3
-
13
-
-
84859912771
-
Generalized expectation criteria for semi-supervised learning of conditional random fields
-
Mann, G. and McCallum, A. Generalized expectation criteria for semi-supervised learning of conditional random fields. In Proc. of Meeting of Assoc. for Computational Linguistics, pp. 870-878, 2008.
-
(2008)
Proc. of Meeting of Assoc. for Computational Linguistics
, pp. 870-878
-
-
Mann, G.1
McCallum, A.2
-
14
-
-
33750699291
-
Multi-conditional learning: Generative/discriminative training for clustering and classification
-
Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
-
McCallum, A., Pal, C, Druck, G. and Wang, X. Multi-conditional learning: Generative/discrimi-native training for clustering and classification. In Proc. Conf. on A.I., pp. 433-439, 2006. (Pubitemid 44705322)
-
(2006)
Proceedings of the National Conference on Artificial Intelligence
, vol.1
, pp. 433-439
-
-
McCallum, A.1
Pal, C.2
Druck, G.3
Wang, X.4
-
16
-
-
78751517535
-
Accurate information extraction from research papers using conditional random fields
-
Peng, F. and Mccallum, A. Accurate information extraction from research papers using conditional random fields. In Proc. of Human Language Technology Conf, pp. 329-336, 2004.
-
(2004)
Proc. of Human Language Technology Conf
, pp. 329-336
-
-
Peng, F.1
McCallum, A.2
-
17
-
-
77956528369
-
Distribution matching for transduction
-
Bengio, Y. Schuurmans, D. Lafferty, J. Williams, C. K. I. and Culotta, A. (eds.), MIT Press
-
Quadrianto, N., Petterson, J., and Smola, A. Distribution matching for transduction. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., and Culotta, A. (eds.), Neural Information Processing Systems, pp. 1500-1508. MIT Press, 2009.
-
(2009)
Neural Information Processing Systems
, pp. 1500-1508
-
-
Quadrianto, N.1
Petterson, J.2
Smola, A.3
-
18
-
-
84859884966
-
Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data
-
Suzuki, J. and Isozaki, H. Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. In Proc. of Meeting of Assoc. for Computational Linguistics, pp. 665-673, 2008.
-
(2008)
Proc. of Meeting of Assoc. for Computational Linguistics
, pp. 665-673
-
-
Suzuki, J.1
Isozaki, H.2
|