-
1
-
-
84896459209
-
-
International Agency for Research on Cancer World Health Organization: Lyon, France. (accessed on 24 March 2015)
-
Stewart, B.; Wild, C.P. World Cancer Report 2014; ISBN 978-92-832-0429-9; International Agency for Research on Cancer World Health Organization: Lyon, France, 2014. Available online: http://www.iarc.fr/en/publications/books/wcr/wcr-order.php (accessed on 24 March 2015).
-
(2014)
World Cancer Report 2014
-
-
Stewart, B.1
Wild, C.P.2
-
2
-
-
77955896719
-
Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications
-
Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Exp. Opin. Drug Deliv. 2010, 7, 1063-1077.
-
(2010)
Exp. Opin. Drug Deliv
, vol.7
, pp. 1063-1077
-
-
Rasmussen, J.W.1
Martinez, E.2
Louka, P.3
Wingett, D.G.4
-
3
-
-
84900400291
-
Drug delivery vehicles on a nano-engineering perspective
-
Felice, B.; Prabhakaran, M.P.; Rodríguez, A.P.; Ramakrishna, S. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. C 2014, 41, 178-195.
-
(2014)
Mater. Sci. Eng. C
, vol.41
, pp. 178-195
-
-
Felice, B.1
Prabhakaran, M.P.2
Rodríguez, A.P.3
Ramakrishna, S.4
-
4
-
-
84929376547
-
New trends in guided nanotherapies for digestive cancers: A systemic review
-
Fernandes, E.; Ferreira, J.A.; Peixoto, A.; Lima, L.; Barroso, S.; Sarmento, B.; Santos, L.L. New trends in guided nanotherapies for digestive cancers: A systemic review. J. Control Release 2015, 209, 288-307.
-
(2015)
J. Control Release
, vol.209
, pp. 288-307
-
-
Fernandes, E.1
Ferreira, J.A.2
Peixoto, A.3
Lima, L.4
Barroso, S.5
Sarmento, B.6
Santos, L.L.7
-
5
-
-
84908210439
-
Pharmacological potential of bioactive engineered nanomaterials
-
Caputo, F.; de Nicola, M.; Ghibelli L. Pharmacological potential of bioactive engineered nanomaterials. Biochem. Pharmacol. 2014, 92, 112-130.
-
(2014)
Biochem. Pharmacol
, vol.92
, pp. 112-130
-
-
Caputo, F.1
de Nicola, M.2
Ghibelli, L.3
-
6
-
-
78649315943
-
To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery
-
Danhier, F.; Feron, O.; Preat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control Release 2010, 148, 135-146.
-
(2010)
J. Control Release
, vol.148
, pp. 135-146
-
-
Danhier, F.1
Feron, O.2
Preat, V.3
-
7
-
-
79959978260
-
Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles
-
Laurent, S.; Dutz, S.; Häfeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011, 166, 8-23.
-
(2011)
Adv. Colloid Interface Sci
, vol.166
, pp. 8-23
-
-
Laurent, S.1
Dutz, S.2
Häfeli, U.O.3
Mahmoudi, M.4
-
8
-
-
84919635829
-
Magnetic properties and antitumor effect of anocomplexes of iron oxide and doxorubicin
-
Orel, V.; Shevchenko, A.; Romanov, A.; Tselepi, M.; Mitrelias, T.; Barnes, C.H.; Burlaka, A.; Lukin, S.; Shchepotin, I. Magnetic properties and antitumor effect of anocomplexes of iron oxide and doxorubicin. Nanomedicine 2015, 11, 47-55.
-
(2015)
Nanomedicine
, vol.11
, pp. 47-55
-
-
Orel, V.1
Shevchenko, A.2
Romanov, A.3
Tselepi, M.4
Mitrelias, T.5
Barnes, C.H.6
Burlaka, A.7
Lukin, S.8
Shchepotin, I.9
-
9
-
-
53849107761
-
Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles
-
Van Landeghem, F.K.; Maier-Hauff, K.; Jordan, A.; Hoffmann, K.-T.; Gneveckow, U.; Scholz, R.; Thiesen, B.; Brück, W.; von Deimling, A. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009, 30, 52-57.
-
(2009)
Biomaterials
, vol.30
, pp. 52-57
-
-
Van Landeghem, F.K.1
Maier-Hauff, K.2
Jordan, A.3
Hoffmann, K.-T.4
Gneveckow, U.5
Scholz, R.6
Thiesen, B.7
Brück, W.8
von Deimling, A.9
-
10
-
-
80053376590
-
Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment
-
Silva, A.C.; Oliveira, T.R.; Mamani, J.B.; Malheiros, S.M.; Malavolta, L.; Pavon, L.F.; Sibov, T.T.; Amaro, E., Jr.; Tannus, A.; Vidoto, E.L. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed. 2011, 6, 591-603.
-
(2011)
Int. J. Nanomed
, vol.6
, pp. 591-603
-
-
Silva, A.C.1
Oliveira, T.R.2
Mamani, J.B.3
Malheiros, S.M.4
Malavolta, L.5
Pavon, L.F.6
Sibov, T.T.7
Amaro, E.8
Tannus, A.9
Vidoto, E.L.10
-
11
-
-
78149278133
-
Magnetic nanoparticle hyperthermia for prostate cancer
-
Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperthermia 2010, 26, 790-795.
-
(2010)
Int. J. Hyperthermia
, vol.26
, pp. 790-795
-
-
Johannsen, M.1
Thiesen, B.2
Wust, P.3
Jordan, A.4
-
12
-
-
79959846524
-
Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
-
Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011, 103, 317-324.
-
(2011)
J. Neurooncol
, vol.103
, pp. 317-324
-
-
Maier-Hauff, K.1
Ulrich, F.2
Nestler, D.3
Niehoff, H.4
Wust, P.5
Thiesen, B.6
Orawa, H.7
Budach, V.8
Jordan, A.9
-
13
-
-
84901659519
-
Heat-generating iron oxide nanocubes: Subtle "destructurators" of the tumoral microenvironment
-
Kolosnjaj-Tabi, J.; di Corato, R.; Lartigue, L.; Marango, I.; Guardia, P.; Silva, A.K., Luciani, N.; Clément, O.; Flaud, P.; Singh, J.V.; et al. Heat-generating iron oxide nanocubes: Subtle "destructurators" of the tumoral microenvironment. ACS Nano 2014, 8, 4268-4283.
-
(2014)
ACS Nano
, vol.8
, pp. 4268-4283
-
-
Kolosnjaj-Tabi, J.1
di Corato, R.2
Lartigue, L.3
Marango, I.4
Guardia, P.5
Silva, A.K.6
Luciani, N.7
Clément, O.8
Flaud, P.9
Singh, J.V.10
-
14
-
-
79952487660
-
Inorganic nanoparticles in cancer therapy
-
Bhattacharyya, S.; Kudgus, R.A.; Bhattacharya, R.; Mukherjee, P. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011, 28, 237-259.
-
(2011)
Pharm Res
, vol.28
, pp. 237-259
-
-
Bhattacharyya, S.1
Kudgus, R.A.2
Bhattacharya, R.3
Mukherjee, P.4
-
15
-
-
84866656031
-
Iron oxide-based nanostructures for MRI and magnetic hyperthermia
-
Hilger, I.; Kaiser, W.A. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 2012, 7, 1443-1459.
-
(2012)
Nanomedicine
, vol.7
, pp. 1443-1459
-
-
Hilger, I.1
Kaiser, W.A.2
-
16
-
-
84888302113
-
Magnetic nanoparticle-based hyper-thermia for cancer treatment
-
Bañobre-López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle-based hyper-thermia for cancer treatment. Rep. Pract. Oncol. Radiother. 2013, 18, 397-400.
-
(2013)
Rep. Pract. Oncol. Radiother
, vol.18
, pp. 397-400
-
-
Bañobre-López, M.1
Teijeiro, A.2
Rivas, J.3
-
17
-
-
84902440492
-
Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy
-
Klein, S.; Sommer, A.; Distel, L.V.; Hazemann, J.L.; Kröner, W.; Neuhuber, W.; Müller, P.; Proux, O.; Kryschi, C. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J. Phys. Chem. B 2014, 118, 6159-6166.
-
(2014)
J. Phys. Chem. B
, vol.118
, pp. 6159-6166
-
-
Klein, S.1
Sommer, A.2
Distel, L.V.3
Hazemann, J.L.4
Kröner, W.5
Neuhuber, W.6
Müller, P.7
Proux, O.8
Kryschi, C.9
-
18
-
-
55749099142
-
Nanoparticles in photodynamic therapy: An emerging paradigm
-
Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008, 60, 1627-1637.
-
(2008)
Adv. Drug Deliv. Rev
, vol.60
, pp. 1627-1637
-
-
Chatterjee, D.K.1
Fong, L.S.2
Zhang, Y.3
-
19
-
-
7044247906
-
Photocatalytic killing effect of TiO2 nanoparticles on Ls- 174-t human colon carcinoma cells
-
Zhang, A.P.; Sun, Y.P. Photocatalytic killing effect of TiO2 nanoparticles on Ls- 174-t human colon carcinoma cells. World J. Gastroenterol. 2004, 10, 3191-3193.
-
(2004)
World J. Gastroenterol
, vol.10
, pp. 3191-3193
-
-
Zhang, A.P.1
Sun, Y.P.2
-
20
-
-
49649083785
-
Surface chemistry influences cancer killing effect of TiO2 nanoparticles
-
Thevenot, P.; Cho, J.; Wavhal, D.; Timmons, R.B.; Tang, L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 2008, 4, 226-236.
-
(2008)
Nanomedicine
, vol.4
, pp. 226-236
-
-
Thevenot, P.1
Cho, J.2
Wavhal, D.3
Timmons, R.B.4
Tang, L.5
-
21
-
-
34248588046
-
Development of watersoluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment
-
Seo, J.W.; Chung, H.; Kim, M.Y.; Lee, J.; Choi, I.H.; Cheon, J. Development of watersoluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 2007, 3, 850-853.
-
(2007)
Small
, vol.3
, pp. 850-853
-
-
Seo, J.W.1
Chung, H.2
Kim, M.Y.3
Lee, J.4
Choi, I.H.5
Cheon, J.6
-
22
-
-
84872852396
-
In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct
-
Cui, S.; Yin, D.; Chen, Y.; Di, Y.; Chen, H.; Ma, Y.; Achilefu, S.; Gu, Y. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676-688.
-
(2013)
ACS Nano
, vol.7
, pp. 676-688
-
-
Cui, S.1
Yin, D.2
Chen, Y.3
Di, Y.4
Chen, H.5
Ma, Y.6
Achilefu, S.7
Gu, Y.8
-
23
-
-
84925652434
-
UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: Near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway
-
Hou Z.; Zhang, Y.; Deng, K.; Chen, Y.; Li, X.;, Deng, X.; Cheng, Z.; Lian, H.; Li, C.; Lin, J. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: Near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano 2015, 9, 2584-2599.
-
(2015)
ACS Nano
, vol.9
, pp. 2584-2599
-
-
Hou, Z.1
Zhang, Y.2
Deng, K.3
Chen, Y.4
Li, X.5
Deng, X.6
Cheng, Z.7
Lian, H.8
Li, C.9
Lin, J.10
-
24
-
-
84907646914
-
Photoactivation of core-shell titania coated upconversion nanoparticles and their effect on cell death
-
Idris, N.M.; Lucky, S.S.; Li, Z.; Huang, K.; Zhang, Y. Photoactivation of core-shell titania coated upconversion nanoparticles and their effect on cell death. J. Mater. Chem. B 2014, 2, 7017-7026.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 7017-7026
-
-
Idris, N.M.1
Lucky, S.S.2
Li, Z.3
Huang, K.4
Zhang, Y.5
-
25
-
-
84921813517
-
Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy
-
Lucky, S.S.; Idris, N.M.; Li, Z.; Huang, K.; Soo, K.C.; Zhang, Y. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano 2015, 9, 191-205.
-
(2015)
ACS Nano
, vol.9
, pp. 191-205
-
-
Lucky, S.S.1
Idris, N.M.2
Li, Z.3
Huang, K.4
Soo, K.C.5
Zhang, Y.6
-
26
-
-
84876707046
-
Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production
-
Wason, M.S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C.H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 2013, 9, 558-569.
-
(2013)
Nanomedicine
, vol.9
, pp. 558-569
-
-
Wason, M.S.1
Colon, J.2
Das, S.3
Seal, S.4
Turkson, J.5
Zhao, J.6
Baker, C.H.7
-
27
-
-
77957151977
-
Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2
-
Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D.W.; Baker, C.H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 2010, 6, 698-705.
-
(2010)
Nanomedicine
, vol.6
, pp. 698-705
-
-
Colon, J.1
Hsieh, N.2
Ferguson, A.3
Kupelian, P.4
Seal, S.5
Jenkins, D.W.6
Baker, C.H.7
-
28
-
-
30644473786
-
Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage
-
Tarnuzzer, R.W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005, 5, 2573-2577.
-
(2005)
Nano Lett
, vol.5
, pp. 2573-2577
-
-
Tarnuzzer, R.W.1
Colon, J.2
Patil, S.3
Seal, S.4
-
29
-
-
80053563164
-
Interfering with pH regulation in tumors as a therapeutic strategy
-
Neri, D.; Supuran, C.T. Interfering with pH regulation in tumors as a therapeutic strategy. Nat. Rev. Drug Discov. 2011, 10, 767-777.
-
(2011)
Nat. Rev. Drug Discov
, vol.10
, pp. 767-777
-
-
Neri, D.1
Supuran, C.T.2
-
30
-
-
84930085828
-
Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells
-
Ali, D.; Alarifi, S.; Alkahtani, S.; AlKahtane, A.A.; Almalik, A. Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochem. Biophys. 2014, 71, 1643-1651.
-
(2014)
Cell Biochem. Biophys
, vol.71
, pp. 1643-1651
-
-
Ali, D.1
Alarifi, S.2
Alkahtani, S.3
AlKahtane, A.A.4
Almalik, A.5
-
31
-
-
84925815621
-
Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity
-
Pešić, M.; Podolski-Renić, A.; Stojković, S.; Matović, B.; Zmejkoski, D.; Kojić, V.; Bogdanović, G.; Pavićević, A.; Mojović, M.; Savić, A.; et al. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem. Biol. Interact. 2015, 232, 85-93.
-
(2015)
Chem. Biol. Interact
, vol.232
, pp. 85-93
-
-
Pešić, M.1
Podolski-Renić, A.2
Stojković, S.3
Matović, B.4
Zmejkoski, D.5
Kojić, V.6
Bogdanović, G.7
Pavićević, A.8
Mojović, M.9
Savić, A.10
-
32
-
-
84904209549
-
Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles-A novel aspect in cancer therapy
-
Sack, M.; Alili, L.; Karaman, E.; Das, S.; Gupta, A.; Seal, S.; Brenneisen. P. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles-A novel aspect in cancer therapy. Mol. Cancer Ther. 2014, 13, 1740-1749.
-
(2014)
Mol. Cancer Ther
, vol.13
, pp. 1740-1749
-
-
Sack, M.1
Alili, L.2
Karaman, E.3
Das, S.4
Gupta, A.5
Seal, S.6
Brenneisen, P.7
-
33
-
-
79951576940
-
Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions
-
Alili, L.; Sack, M.; Karakoti, A.S.; Teuber, S.; Puschmann, K.; Hirst, S.M.; Reilly, C.M.; Zanger, K.; Stahl, W.; Das, S.; et al. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 2011, 32, 2918-2929.
-
(2011)
Biomaterials
, vol.32
, pp. 2918-2929
-
-
Alili, L.1
Sack, M.2
Karakoti, A.S.3
Teuber, S.4
Puschmann, K.5
Hirst, S.M.6
Reilly, C.M.7
Zanger, K.8
Stahl, W.9
Das, S.10
-
34
-
-
84875122430
-
Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro
-
De Marzi, L.; Monaco, A.; de Lapuente, J.; Ramos, D.; Borras, M.; di Gioacchino, M.; Santucci, S.;, Poma, A.Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int. J. Mol. Sci. 2013, 14, 3065-3077.
-
(2013)
Int. J. Mol. Sci
, vol.14
, pp. 3065-3077
-
-
De Marzi, L.1
Monaco, A.2
de Lapuente, J.3
Ramos, D.4
Borras, M.5
di Gioacchino, M.6
Santucci, S.7
Poma, A.8
-
35
-
-
84875114271
-
Downregulation of tumor growth and invasion by redox-active nanoparticles
-
Alili, L.; Sack, M.; von Montfort, C.; Giri, S.; Das, S.; Carroll, K.S.; Zanger, K.; Seal, S.; Brenneisen, P. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid. Redox. Signal 2013, 19, 765-778.
-
(2013)
Antioxid. Redox. Signal
, vol.19
, pp. 765-778
-
-
Alili, L.1
Sack, M.2
von Montfort, C.3
Giri, S.4
Das, S.5
Carroll, K.S.6
Zanger, K.7
Seal, S.8
Brenneisen, P.9
-
36
-
-
84876578509
-
ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells
-
Wahab, R.; Dwivedi, S.; Umar, A.; Singh, S.; Hwang, I.H.; Shin, H.S.; Musarrat, J.; Al-Khedhairy, A.A.; Kim, Y.S. ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells. J. Biomed. Nanotechnol. 2013, 9, 441-449.
-
(2013)
J. Biomed. Nanotechnol
, vol.9
, pp. 441-449
-
-
Wahab, R.1
Dwivedi, S.2
Umar, A.3
Singh, S.4
Hwang, I.H.5
Shin, H.S.6
Musarrat, J.7
Al-Khedhairy, A.A.8
Kim, Y.S.9
-
37
-
-
84880543357
-
ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells
-
Wahab, R.; Kaushik, N.K.; Kaushik, N.; Choi, E.H.; Umar, A.; Dwivedi, S.; Musarrat, J.; Al-Khedhairy, A.A. ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J. Biomed. Nanotechnol. 2013, 9, 1181-1189.
-
(2013)
J. Biomed. Nanotechnol
, vol.9
, pp. 1181-1189
-
-
Wahab, R.1
Kaushik, N.K.2
Kaushik, N.3
Choi, E.H.4
Umar, A.5
Dwivedi, S.6
Musarrat, J.7
Al-Khedhairy, A.A.8
-
38
-
-
84896502546
-
ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity
-
Wahab, R.; Siddiqui, M.A.; Saquib, Q.; Dwivedi, S.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A.A.; Shin, H.S. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B 2014, 117, 267-276.
-
(2014)
Colloids Surf. B
, vol.117
, pp. 267-276
-
-
Wahab, R.1
Siddiqui, M.A.2
Saquib, Q.3
Dwivedi, S.4
Ahmad, J.5
Musarrat, J.6
Al-Khedhairy, A.A.7
Shin, H.S.8
-
39
-
-
84897989669
-
Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
-
Fang, R.H.; Hu, C.M.; Luk, B.T.; Gao, W.; Copp, J.A.; Tai, Y.; O'Connor, D.E.; Zhang, L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181-2188.
-
(2014)
Nano Lett
, vol.14
, pp. 2181-2188
-
-
Fang, R.H.1
Hu, C.M.2
Luk, B.T.3
Gao, W.4
Copp, J.A.5
Tai, Y.6
O'Connor, D.E.7
Zhang, L.8
-
40
-
-
66849091876
-
Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant T at carcinoembryonic antigen derived from Escherichia coli
-
Bae, M.Y.; Cho, N.H.; Seong, S.Y. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant T at carcinoembryonic antigen derived from Escherichia coli. Clin. Exp. Immunol. 2009, 157, 128-138.
-
(2009)
Clin. Exp. Immunol
, vol.157
, pp. 128-138
-
-
Bae, M.Y.1
Cho, N.H.2
Seong, S.Y.3
-
41
-
-
80455164555
-
A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy
-
Cho, N.H.; Cheong, T.C.; Min, J.H.; Wu, J.H.; Lee, S.J.; Kim, D.; Yang, J.S.; Kim, S.; Kim, Y.K.; Seong, S.Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675-682.
-
(2011)
Nat. Nanotechnol
, vol.6
, pp. 675-682
-
-
Cho, N.H.1
Cheong, T.C.2
Min, J.H.3
Wu, J.H.4
Lee, S.J.5
Kim, D.6
Yang, J.S.7
Kim, S.8
Kim, Y.K.9
Seong, S.Y.10
-
42
-
-
84928208303
-
The toxicity and distribution of iron oxide-zinc oxide core-shell nanoparticles in C57BL/6 mice after repeated subcutaneous administration
-
Yun, J.W.; Yoon, J.H.; Kang, B.C.; Cho, N.H.; Seok, S.H.; Min, S.K.; Min, J.H.; Che, J.H.; Kim, Y.K. The toxicity and distribution of iron oxide-zinc oxide core-shell nanoparticles in C57BL/6 mice after repeated subcutaneous administration. J. Appl. Toxicol. 2015, 35, 593-602.
-
(2015)
J. Appl. Toxicol
, vol.35
, pp. 593-602
-
-
Yun, J.W.1
Yoon, J.H.2
Kang, B.C.3
Cho, N.H.4
Seok, S.H.5
Min, S.K.6
Min, J.H.7
Che, J.H.8
Kim, Y.K.9
-
43
-
-
33845395850
-
Mechanisms of cell death in oxidative stress
-
Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M. Mechanisms of cell death in oxidative stress. Antioxid. Redox. Signal 2007, 9, 49-89.
-
(2007)
Antioxid. Redox. Signal
, vol.9
, pp. 49-89
-
-
Ryter, S.W.1
Kim, H.P.2
Hoetzel, A.3
Park, J.W.4
Nakahira, K.5
Wang, X.6
Choi, A.M.7
-
44
-
-
84983590160
-
Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles
-
Baskar, G.; Chandhuru, J.; Sheraz Fahad, K.; Praveen, A.S.; Chamundeeswari, M.; Muthukumar, T. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles. J. Mater. Sci. Mater. Med. 2015, 26, doi:10.1007/s10856-015-5380-z.
-
(2015)
J. Mater. Sci. Mater. Med
, vol.26
-
-
Baskar, G.1
Chandhuru, J.2
Sheraz Fahad, K.3
Praveen, A.S.4
Chamundeeswari, M.5
Muthukumar, T.6
-
45
-
-
78649980061
-
Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro
-
Hackenberg, S.; Scherzed, A.; Kessler, M.; Froelich, K.; Ginzkey, C.; Koehler, C.; Burghartz, M.; Hagen, R.; Kleinsasser, N. Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro. Int. J. Oncol. 2010, 37, 1583-1590.
-
(2010)
Int. J. Oncol
, vol.37
, pp. 1583-1590
-
-
Hackenberg, S.1
Scherzed, A.2
Kessler, M.3
Froelich, K.4
Ginzkey, C.5
Koehler, C.6
Burghartz, M.7
Hagen, R.8
Kleinsasser, N.9
-
46
-
-
84864276914
-
Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines
-
Hackenberg, S.; Scherzed, A.; Harnisch, W.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J. Photochem. Photobiol. B 2012, 114, 87-93.
-
(2012)
J. Photochem. Photobiol. B
, vol.114
, pp. 87-93
-
-
Hackenberg, S.1
Scherzed, A.2
Harnisch, W.3
Froelich, K.4
Ginzkey, C.5
Koehler, C.6
Hagen, R.7
Kleinsasser, N.8
-
47
-
-
56549121540
-
Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation
-
Guo, D.; Wu, C.; Jiang, H.; Li, Q.; Wang, X.; Chen, B. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol. B 2008, 93, 119-126.
-
(2008)
J. Photochem. Photobiol. B
, vol.93
, pp. 119-126
-
-
Guo, D.1
Wu, C.2
Jiang, H.3
Li, Q.4
Wang, X.5
Chen, B.6
-
48
-
-
84906835039
-
Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles
-
Sankar, R.; Maheswari, R.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 234-239.
-
(2014)
Mater. Sci. Eng. C
, vol.44
, pp. 234-239
-
-
Sankar, R.1
Maheswari, R.2
Karthik, S.3
Shivashangari, K.S.4
Ravikumar, V.5
-
49
-
-
84899016627
-
Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity
-
Sivaraj, R.; Rahman, P.K.; Rajiv, P.; Narendhran, S.; Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A 2014, 129, 255-258.
-
(2014)
Spectrochim. Acta A
, vol.129
, pp. 255-258
-
-
Sivaraj, R.1
Rahman, P.K.2
Rajiv, P.3
Narendhran, S.4
Venckatesh, R.5
-
50
-
-
77949915708
-
Biological synthesis of metal nanoparticles by microbes
-
Narayanan, K.B., Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1-13.
-
(2010)
Adv. Colloid Interface Sci
, vol.156
, pp. 1-13
-
-
Narayanan, K.B.1
Sakthivel, N.2
-
51
-
-
56049103979
-
Different CuO nanostructures: Synthesis, caracterization, and applications for glucose sensors
-
Zhang, X.; Wang, G.; Liu, X.; Wu, J.; Li, M.; Gu, J.; Liu, L.; Fang, B. Different CuO nanostructures: Synthesis, caracterization, and applications for glucose sensors. J. Phys. Chem. C 2008, 112, 16845-16849.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 16845-16849
-
-
Zhang, X.1
Wang, G.2
Liu, X.3
Wu, J.4
Li, M.5
Gu, J.6
Liu, L.7
Fang, B.8
-
52
-
-
27344453384
-
Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties
-
Cioffi, N.; Torsi, L.; Ditaranto, N.; Tantillo, G.; Ghibelli, L.; Sabbatini, L.; Bleve-Zacheo, T.; D'Alessio, M.; Zambonin, P.G.; Traversa, E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 2005, 17, 5255-5262.
-
(2005)
Chem. Mater
, vol.17
, pp. 5255-5262
-
-
Cioffi, N.1
Torsi, L.2
Ditaranto, N.3
Tantillo, G.4
Ghibelli, L.5
Sabbatini, L.6
Bleve-Zacheo, T.7
D'Alessio, M.8
Zambonin, P.G.9
Traversa, E.10
-
53
-
-
84870308185
-
Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells
-
Wang, Y.; Zi, X.Y.; Su, J.; Zhang, H.X.; Zhang, X.R.; Zhu, H.Y.; Li, J.X.; Yin, M.; Yang, F.; Hu, Y.P. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int. J. Nanomed. 2012, 7, 2641-2652.
-
(2012)
Int. J. Nanomed
, vol.7
, pp. 2641-2652
-
-
Wang, Y.1
Zi, X.Y.2
Su, J.3
Zhang, H.X.4
Zhang, X.R.5
Zhu, H.Y.6
Li, J.X.7
Yin, M.8
Yang, F.9
Hu, Y.P.10
-
54
-
-
84895855470
-
Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria
-
Wang, Y.; Yang, F.; Zhang, H.-X.; Zi, X.Y.; Pan, X.H.; Chem, F.; Luo, W.D.; Li, J.X.; Zhu, H.Y.; Hu, Y.P. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 2013, 4, doi:10.1038/cddis.2013.314.
-
(2013)
Cell Death Dis
, vol.4
-
-
Wang, Y.1
Yang, F.2
Zhang, H.-X.3
Zi, X.Y.4
Pan, X.H.5
Chem, F.6
Luo, W.D.7
Li, J.X.8
Zhu, H.Y.9
Hu, Y.P.10
-
55
-
-
84881105475
-
Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells
-
Siddiqui, M.A.; Alhadlaq, H.A.; Ahmad, J.; Al-Khedhairy, A.A.; Musarrat, J.; Ahamed, M. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS ONE 2013, 8, doi:0.1371/journal.pone.0069534.
-
(2013)
PLoS ONE
, vol.8
-
-
Siddiqui, M.A.1
Alhadlaq, H.A.2
Ahmad, J.3
Al-Khedhairy, A.A.4
Musarrat, J.5
Ahamed, M.6
-
56
-
-
84928939851
-
Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice
-
Meng, H.; Wang, M.; Liu, H.; Liu, X.; Situ, A.; Wu, B.; Ji, Z.; Chang, C.H.; Nel, A.E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 2015, 9, 3540-3557.
-
(2015)
ACS Nano
, vol.9
, pp. 3540-3557
-
-
Meng, H.1
Wang, M.2
Liu, H.3
Liu, X.4
Situ, A.5
Wu, B.6
Ji, Z.7
Chang, C.H.8
Nel, A.E.9
-
57
-
-
77955613395
-
Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals
-
Lu,J.; Liong, M.; Li, Z.; Zink, J.I.; Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010, 6, 1794-1805.
-
(2010)
Small
, vol.6
, pp. 1794-1805
-
-
Lu, J.1
Liong, M.2
Li, Z.3
Zink, J.I.4
Tamanoi, F.5
-
58
-
-
33646414203
-
Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding
-
Bagwe, R.P.; Hilliard, L.R.; Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357-4362.
-
(2006)
Langmuir
, vol.22
, pp. 4357-4362
-
-
Bagwe, R.P.1
Hilliard, L.R.2
Tan, W.3
-
59
-
-
81255160990
-
Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation
-
Botella, P.; Abasolo, I.; Fernández, Y.; Muniesa, C.; Miranda, S.; Quesada, M.; Ruiz, J.; Schwartz, S.; Corma, A. Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation. J. Control Release 2011, 156, 246-257.
-
(2011)
J. Control Release
, vol.156
, pp. 246-257
-
-
Botella, P.1
Abasolo, I.2
Fernández, Y.3
Muniesa, C.4
Miranda, S.5
Quesada, M.6
Ruiz, J.7
Schwartz, S.8
Corma, A.9
-
60
-
-
0032758610
-
Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors
-
Drummond, D.C.; Meyer, O.; Hong, K.; Kirpotin, D.B.; Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 1999, 51, 691-743.
-
(1999)
Pharmacol. Rev
, vol.51
, pp. 691-743
-
-
Drummond, D.C.1
Meyer, O.2
Hong, K.3
Kirpotin, D.B.4
Papahadjopoulos, D.5
-
61
-
-
28444442646
-
Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations
-
Limbach, L.K.; Li, Y.; Grass, R.N.; Brunner, T.J.; Hintermann, M.A.; Muller, M.; Gunther, D.; Stark, W.J. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 2005, 39, 9370-9376.
-
(2005)
Environ. Sci. Technol
, vol.39
, pp. 9370-9376
-
-
Limbach, L.K.1
Li, Y.2
Grass, R.N.3
Brunner, T.J.4
Hintermann, M.A.5
Muller, M.6
Gunther, D.7
Stark, W.J.8
-
62
-
-
84919687408
-
Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity
-
Lee, Y.K.; Choi, E.J.; Webster, T.J.; Kim, S.H.; Khang D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomed. 2014, 10, 97-113.
-
(2014)
Int. J. Nanomed
, vol.10
, pp. 97-113
-
-
Lee, Y.K.1
Choi, E.J.2
Webster, T.J.3
Kim, S.H.4
Khang, D.5
|