-
1
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. NIPS, 2012, pp. 1097-1105.
-
Proc. NIPS, 2012
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
2
-
-
80052874098
-
Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
-
Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, "Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis," in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 3361-3368.
-
Proc. IEEE Conf. CVPR, Jun. 2011
, pp. 3361-3368
-
-
Le, Q.V.1
Zou, W.Y.2
Yeung, S.Y.3
Ng, A.Y.4
-
3
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov.
-
G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
4
-
-
84898957022
-
Learning a deep compact image representation for visual tracking
-
N. Wang and D.-Y. Yeung, "Learning a deep compact image representation for visual tracking," in Proc. NIPS, 2013, pp. 809-817.
-
Proc. NIPS, 2013
, pp. 809-817
-
-
Wang, N.1
Yeung, D.-Y.2
-
5
-
-
70349146040
-
Learning transformational invariants from natural movies
-
C. F. Cadieu and B. A. Olshausen, "Learning transformational invariants from natural movies," in Proc. NIPS, 2008, pp. 209-216.
-
Proc. NIPS, 2008
, pp. 209-216
-
-
Cadieu, C.F.1
Olshausen, B.A.2
-
6
-
-
84877777295
-
Deep learning of invariant features via simulated fixations in video
-
W. Y. Zou, A. Y. Ng, S. Zhu, and K. Yu, "Deep learning of invariant features via simulated fixations in video," in Proc. NIPS, 2012, pp. 3212-3220.
-
Proc. NIPS, 2012
, pp. 3212-3220
-
-
Zou, W.Y.1
Ng, A.Y.2
Zhu, S.3
Yu, K.4
-
7
-
-
84966262179
-
Updating quasi-Newton matrices with limited storage
-
J. Nocedal, "Updating quasi-Newton matrices with limited storage,"Math. Comput., vol. 35, no. 151, pp. 773-782, 1980.
-
(1980)
Math. Comput.
, vol.35
, Issue.151
, pp. 773-782
-
-
Nocedal, J.1
-
8
-
-
84891531489
-
Human identity and gender recognition from gait sequences with arbitrary walking directions
-
Jan.
-
J. Lu, G. Wang, and P. Moulin, "Human identity and gender recognition from gait sequences with arbitrary walking directions," IEEE Trans. Inf. Forensics Security, vol. 9, no. 1, pp. 51-61, Jan. 2014.
-
(2014)
IEEE Trans. Inf. Forensics Security
, vol.9
, Issue.1
, pp. 51-61
-
-
Lu, J.1
Wang, G.2
Moulin, P.3
-
9
-
-
84911412144
-
Tracklet association with online target-specific metric learning
-
B. Wang, G. Wang, K. L. Chan, and L. Wang, "Tracklet association with online target-specific metric learning," in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1234-1241.
-
Proc. IEEE Conf. CVPR, Jun. 2014
, pp. 1234-1241
-
-
Wang, B.1
Wang, G.2
Chan, K.L.3
Wang, L.4
-
10
-
-
0031651559
-
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation
-
Jan.
-
M. J. Black and A. D. Jepson, "EigenTracking: Robust matching and tracking of articulated objects using a view-based representation," Int. J. Comput. Vis., vol. 26, no. 1, pp. 63-84, Jan. 1998.
-
(1998)
Int. J. Comput. Vis.
, vol.26
, Issue.1
, pp. 63-84
-
-
Black, M.J.1
Jepson, A.D.2
-
11
-
-
5044236718
-
Visual tracking using learned linear subspaces
-
J. Ho, K.-C. Lee, M.-H. Yang, and D. Kriegman, "Visual tracking using learned linear subspaces," in Proc. IEEE Conf. CVPR, Jun./Jul. 2004, pp. I-782-I-789.
-
Proc. IEEE Conf. CVPR, Jun./Jul. 2004
, pp. I782-I789
-
-
Ho, J.1
Lee, K.-C.2
Yang, M.-H.3
Kriegman, D.4
-
12
-
-
39749173057
-
Incremental learning for robust visual tracking
-
May
-
D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental learning for robust visual tracking," Int. J. Comput. Vis., vol. 77, nos. 1-3, pp. 125-141, May 2008.
-
(2008)
Int. J. Comput. Vis.
, vol.77
, Issue.1-3
, pp. 125-141
-
-
Ross, D.A.1
Lim, J.2
Lin, R.-S.3
Yang, M.-H.4
-
13
-
-
0032136153
-
CONDENSATION - Conditional density propagation for visual tracking
-
Aug.
-
M. Isard and A. Blake, "CONDENSATION - Conditional density propagation for visual tracking," Int. J. Comput. Vis., vol. 29, no. 1, pp. 5-28, Aug. 1998.
-
(1998)
Int. J. Comput. Vis.
, vol.29
, Issue.1
, pp. 5-28
-
-
Isard, M.1
Blake, A.2
-
14
-
-
0008802221
-
An Introduction to Sequential Monte Carlo methods
-
Berlin, Germany: Springer-Verlag
-
A. Doucet, N. de Freitas, and N. Gordon, "An introduction to sequential Monte Carlo methods," in Sequential Monte Carlo Methods in Practice. Berlin, Germany: Springer-Verlag, 2001.
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Doucet, A.1
De Freitas, N.2
Gordon, N.3
-
15
-
-
0038633569
-
Kernel-based object tracking
-
May
-
D. Comaniciu, V. Ramesh, and P. Meer, "Kernel-based object tracking,"IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564-577, May 2003.
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, Issue.5
, pp. 564-577
-
-
Comaniciu, D.1
Ramesh, V.2
Meer, P.3
-
16
-
-
0036565814
-
Mean shift: A robust approach toward feature space analysis
-
May
-
D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.5
, pp. 603-619
-
-
Comaniciu, D.1
Meer, P.2
-
17
-
-
1542285823
-
Lucas-Kanade 20 years on: A unifying framework
-
Feb.
-
S. Baker and I. Matthews, "Lucas-Kanade 20 years on: A unifying framework," Int. J. Comput. Vis., vol. 56, no. 3, pp. 221-255, Feb. 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.56
, Issue.3
, pp. 221-255
-
-
Baker, S.1
Matthews, I.2
-
18
-
-
0142134976
-
Robust online appearance models for visual tracking
-
Oct.
-
A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, "Robust online appearance models for visual tracking," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10, pp. 1296-1311, Oct. 2003.
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, Issue.10
, pp. 1296-1311
-
-
Jepson, A.D.1
Fleet, D.J.2
El-Maraghi, T.F.3
-
19
-
-
84866644789
-
Learning image similarity from Flickr groups using fast kernel machines
-
Nov.
-
G. Wang, D. Hoiem, and D. Forsyth, "Learning image similarity from Flickr groups using fast kernel machines," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2177-2188, Nov. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.11
, pp. 2177-2188
-
-
Wang, G.1
Hoiem, D.2
Forsyth, D.3
-
20
-
-
84883165952
-
Improved object categorization and detection using comparative object similarity
-
Oct.
-
G. Wang, D. Forsyth, and D. Hoiem, "Improved object categorization and detection using comparative object similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 10, pp. 2442-2453, Oct. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.10
, pp. 2442-2453
-
-
Wang, G.1
Forsyth, D.2
Hoiem, D.3
-
21
-
-
3242681758
-
Support vector tracking
-
Aug.
-
S. Avidan, "Support vector tracking," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 8, pp. 1064-1072, Aug. 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.8
, pp. 1064-1072
-
-
Avidan, S.1
-
23
-
-
56749152262
-
Semi-supervised on-line boosting for robust tracking
-
H. Grabner, C. Leistner, and H. Bischof, "Semi-supervised on-line boosting for robust tracking," in Proc. ECCV, 2008, pp. 234-247.
-
Proc. ECCV, 2008
, pp. 234-247
-
-
Grabner, H.1
Leistner, C.2
Bischof, H.3
-
24
-
-
70450188146
-
Visual tracking with online multiple instance learning
-
B. Babenko, M.-H. Yang, and S. J. Belongie, "Visual tracking with online multiple instance learning," in Proc. IEEE Conf. CVPR, Jun. 2009, pp. 983-990.
-
Proc. IEEE Conf. CVPR, Jun. 2009
, pp. 983-990
-
-
Babenko, B.1
Yang, M.-H.2
Belongie, S.J.3
-
25
-
-
77956005443
-
P-N learning: Bootstrapping binary classifiers by structural constraints
-
Z. Kalal, J. Matas, and K. Mikolajczyk, "P-N learning: Bootstrapping binary classifiers by structural constraints," in Proc. IEEE Conf. CVPR, Jun. 2010, pp. 49-56.
-
Proc. IEEE Conf. CVPR, Jun. 2010
, pp. 49-56
-
-
Kalal, Z.1
Matas, J.2
Mikolajczyk, K.3
-
26
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching using sparse coding for image classification," in Proc. IEEE Conf. CVPR, Jun. 2009, pp. 1794-1801.
-
Proc. IEEE Conf. CVPR, Jun. 2009
, pp. 1794-1801
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.4
-
28
-
-
80052878612
-
1 tracker with occlusion detection
-
1 tracker with occlusion detection," in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 1257-1264.
-
Proc. IEEE Conf. CVPR, Jun. 2011
, pp. 1257-1264
-
-
Mei, X.1
Ling, H.2
Wu, Y.3
Blasch, E.4
Bai, L.5
-
29
-
-
80052901898
-
Real-time visual tracking using compressive sensing
-
H. Li, C. Shen, and Q. Shi, "Real-time visual tracking using compressive sensing," in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 1305-1312.
-
Proc. IEEE Conf. CVPR, Jun. 2011
, pp. 1305-1312
-
-
Li, H.1
Shen, C.2
Shi, Q.3
-
30
-
-
78149335980
-
Robust and fast collaborative tracking with two stage sparse optimization
-
B. Liu, L. Yang, J. Huang, P. Meer, L. Gong, and C. Kulikowski, "Robust and fast collaborative tracking with two stage sparse optimization," in Proc. ECCV, 2010, pp. 624-637.
-
Proc. ECCV, 2010
, pp. 624-637
-
-
Liu, B.1
Yang, L.2
Huang, J.3
Meer, P.4
Gong, L.5
Kulikowski, C.6
-
31
-
-
80052879604
-
Robust tracking using local sparse appearance model and K-selection
-
B. Liu, J. Huang, L. Yang, and C. Kulikowsk, "Robust tracking using local sparse appearance model and K-selection," in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 1313-1320.
-
Proc. IEEE Conf. CVPR, Jun. 2011
, pp. 1313-1320
-
-
Liu, B.1
Huang, J.2
Yang, L.3
Kulikowsk, C.4
-
32
-
-
84866725281
-
Visual tracking via adaptive structural local sparse appearance model
-
X. Jia, H. Lu, and M.-H. Yang, "Visual tracking via adaptive structural local sparse appearance model," in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 1822-1829.
-
Proc. IEEE Conf. CVPR, Jun. 2012
, pp. 1822-1829
-
-
Jia, X.1
Lu, H.2
Yang, M.-H.3
-
33
-
-
27644528380
-
Online selection of discriminative tracking features
-
Oct.
-
R. T. Collins, Y. Liu, and M. Leordeanu, "Online selection of discriminative tracking features," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1631-1643, Oct. 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.10
, pp. 1631-1643
-
-
Collins, R.T.1
Liu, Y.2
Leordeanu, M.3
-
34
-
-
84898020313
-
Real-time tracking via on-line boosting
-
H. Grabner, M. Grabner, and H. Bischof, "Real-time tracking via on-line boosting," in Proc. BMVC, 2006, pp. 47-56.
-
Proc. BMVC, 2006
, pp. 47-56
-
-
Grabner, H.1
Grabner, M.2
Bischof, H.3
-
35
-
-
34948846147
-
Learning features for tracking
-
M. Grabner, H. Grabner, and H. Bischof, "Learning features for tracking,"in Proc. IEEE Conf. CVPR, Jun. 2007, pp. 1-8.
-
Proc. IEEE Conf. CVPR, Jun. 2007
, pp. 1-8
-
-
Grabner, M.1
Grabner, H.2
Bischof, H.3
-
36
-
-
84867872820
-
Real-time compressive tracking
-
K. Zhang, L. Zhang, and M.-H. Yang, "Real-time compressive tracking,"in Proc. ECCV, 2012, pp. 864-877.
-
Proc. ECCV, 2012
, pp. 864-877
-
-
Zhang, K.1
Zhang, L.2
Yang, M.-H.3
-
37
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Jul.
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
38
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Jul.
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
39
-
-
84866707640
-
The shape Boltzmann machine: A strong model of object shape
-
S. M. A. Eslami, N. Heess, and J. M. Winn, "The shape Boltzmann machine: A strong model of object shape," in Proc. IEEE Conf. CVPR, Jul. 2012, pp. 406-413.
-
Proc. IEEE Conf. CVPR, Jul. 2012
, pp. 406-413
-
-
Eslami, S.M.A.1
Heess, N.2
Winn, J.M.3
-
40
-
-
84877742016
-
Emergence of object-selective features in unsupervised feature learning
-
A. Coates, A. Karpathy, and A. Y. Ng, "Emergence of object-selective features in unsupervised feature learning," in Proc. NIPS, 2012, pp. 2681-2689.
-
Proc. NIPS, 2012
, pp. 2681-2689
-
-
Coates, A.1
Karpathy, A.2
Ng, A.Y.3
-
41
-
-
85162494200
-
Selecting receptive fields in deep networks
-
A. Coates and A. Y. Ng, "Selecting receptive fields in deep networks,"in Proc. NIPS, 2011, pp. 2528-2536.
-
Proc. NIPS, 2011
, pp. 2528-2536
-
-
Coates, A.1
Ng, A.Y.2
-
42
-
-
85162310599
-
ICA with reconstruction cost for efficient overcomplete feature learning
-
Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng, "ICA with reconstruction cost for efficient overcomplete feature learning," in Proc. NIPS, 2011, pp. 1017-1025.
-
Proc. NIPS, 2011
, pp. 1017-1025
-
-
Le, Q.V.1
Karpenko, A.2
Ngiam, J.3
Ng, A.Y.4
-
43
-
-
84883524644
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le et al., "Building high-level features using large scale unsupervised learning," in Proc. ICML, 2012, pp. 1-11.
-
Proc. ICML, 2012
, pp. 1-11
-
-
Le, Q.V.1
-
44
-
-
51749124671
-
Unsupervised natural experience rapidly alters invariant object representation in visual cortex
-
Sep.
-
N. Li and J. J. DiCarlo, "Unsupervised natural experience rapidly alters invariant object representation in visual cortex," Science, vol. 321, no. 5895, pp. 1502-1507, Sep. 2008.
-
(2008)
Science
, vol.321
, Issue.5895
, pp. 1502-1507
-
-
Li, N.1
DiCarlo, J.J.2
-
45
-
-
78149318752
-
Adapting visual category models to new domains
-
K. Saenko, B. Kulis, M. Fritz, and T. Darrell, "Adapting visual category models to new domains," in Proc. ECCV, 2010, pp. 213-226.
-
Proc. ECCV, 2010
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
47
-
-
77956003629
-
Visual event recognition in videos by learning from web data
-
L. Duan, D. Xu, I. W. Tsang, and J. Luo, "Visual event recognition in videos by learning from web data," in Proc. IEEE Conf. CVPR, Jun. 2010, pp. 1959-1966.
-
Proc. IEEE Conf. CVPR, Jun. 2010
, pp. 1959-1966
-
-
Duan, L.1
Xu, D.2
Tsang, I.W.3
Luo, J.4
-
48
-
-
80053443013
-
Domain adaptation for large-scale sentiment classification: A deep learning approach
-
X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment classification: A deep learning approach," in Proc. ICML, 2011, pp. 513-520.
-
Proc. ICML, 2011
, pp. 513-520
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
49
-
-
84862533857
-
Transferring visual prior for online object tracking
-
Jul.
-
Q. Wang, F. Chen, J. Yang, W. Xu, and M.-H. Yang, "Transferring visual prior for online object tracking," IEEE Trans. Image Process., vol. 21, no. 7, pp. 3296-3305, Jul. 2012.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, Issue.7
, pp. 3296-3305
-
-
Wang, Q.1
Chen, F.2
Yang, J.3
Xu, W.4
Yang, M.-H.5
-
51
-
-
84866285609
-
Real time robust L1 tracker using accelerated proximal gradient approach
-
C. Bao, Y. Wu, H. Ling, and H. Ji, "Real time robust L1 tracker using accelerated proximal gradient approach," in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 1830-1837.
-
Proc. IEEE Conf. CVPR, Jun. 2012
, pp. 1830-1837
-
-
Bao, C.1
Wu, Y.2
Ling, H.3
Ji, H.4
-
52
-
-
84898798671
-
Finding the best from the second bests - Inhibiting subjective bias in evaluation of visual tracking algorithms
-
Y. Pang and H. Ling, "Finding the best from the second bests - Inhibiting subjective bias in evaluation of visual tracking algorithms," in Proc. ICCV, Dec. 2013, pp. 2784-2791.
-
Proc. ICCV, Dec. 2013
, pp. 2784-2791
-
-
Pang, Y.1
Ling, H.2
-
54
-
-
84887348427
-
Online object tracking: A benchmark
-
Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark,"in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 2411-2418.
-
Proc. IEEE Conf. CVPR, Jun. 2013
, pp. 2411-2418
-
-
Wu, Y.1
Lim, J.2
Yang, M.-H.3
-
55
-
-
33845596140
-
Robust fragments-based tracking using the integral histogram
-
A. Adam, E. Rivlin, and I. Shimshoni, "Robust fragments-based tracking using the integral histogram," in Proc. IEEE Conf. CVPR, Jun. 2006, pp. 798-805.
-
Proc. IEEE Conf. CVPR, Jun. 2006
, pp. 798-805
-
-
Adam, A.1
Rivlin, E.2
Shimshoni, I.3
-
56
-
-
84861312439
-
Tracking-learning-detection
-
Jul.
-
Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-learning-detection,"IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409-1422, Jul. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.7
, pp. 1409-1422
-
-
Kalal, Z.1
Mikolajczyk, K.2
Matas, J.3
-
58
-
-
84866678444
-
Robust visual tracking via multi-task sparse learning
-
T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, "Robust visual tracking via multi-task sparse learning," in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 2042-2049.
-
Proc. IEEE Conf. CVPR, Jun. 2012
, pp. 2042-2049
-
-
Zhang, T.1
Ghanem, B.2
Liu, S.3
Ahuja, N.4
-
59
-
-
84866648566
-
Robust object tracking via sparsity-based collaborative model
-
W. Zhong, H. Lu, and M.-H. Yang, "Robust object tracking via sparsity-based collaborative model," in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 1838-1845.
-
Proc. IEEE Conf. CVPR, Jun. 2012
, pp. 1838-1845
-
-
Zhong, W.1
Lu, H.2
Yang, M.-H.3
-
60
-
-
84871648489
-
Online object tracking with sparse prototypes
-
Jan.
-
D. Wang, H. Lu, and M.-H. Yang, "Online object tracking with sparse prototypes," IEEE Trans. Image Process., vol. 22, no. 1, pp. 314-325, Jan. 2013.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, Issue.1
, pp. 314-325
-
-
Wang, D.1
Lu, H.2
Yang, M.-H.3
-
61
-
-
84885836685
-
Least soft-threshold squares tracking
-
D. Wang, H. Lu, and M.-H. Yang, "Least soft-threshold squares tracking,"in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 2371-2378.
-
Proc. IEEE Conf. CVPR, Jun. 2013
, pp. 2371-2378
-
-
Wang, D.1
Lu, H.2
Yang, M.-H.3
-
62
-
-
84887340257
-
Learning compact binary codes for visual tracking
-
X. Li, C. Shen, A. R. Dick, and A. van den Hengel, "Learning compact binary codes for visual tracking," in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 2419-2426.
-
Proc. IEEE Conf. CVPR, Jun. 2013
, pp. 2419-2426
-
-
Li, X.1
Shen, C.2
Dick, A.R.3
Van Den Hengel, A.4
-
63
-
-
84887381620
-
Visual tracking via locality sensitive histograms
-
S. He, Q. Yang, R.W. H. Lau, J.Wang, and M.-H. Yang, "Visual tracking via locality sensitive histograms," in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 2427-2434.
-
Proc. IEEE Conf. CVPR, Jun. 2013
, pp. 2427-2434
-
-
He, S.1
Yang, Q.2
Lau, R.W.H.3
Wang, J.4
Yang, M.-H.5
|