메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1434-1441

Scalable multitask representation learning for scene classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE PROCESSING; MULTI-TASK LEARNING; PATTERN RECOGNITION;

EID: 84911375886     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.186     Document Type: Conference Paper
Times cited : (49)

References (22)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 2
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 3
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 6
    • 51949101231 scopus 로고    scopus 로고
    • A dis-criminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-criminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 7
    • 36348960733 scopus 로고    scopus 로고
    • Biconvex sets and optimization with biconvex functions: A survey and extensions
    • J. Gorski, F. Pfeuffer, and K. Klamroth. Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Meth. Oper. Res., 66(3):373-407, 2007.
    • (2007) Math. Meth. Oper. Res. , vol.66 , Issue.3 , pp. 373-407
    • Gorski, J.1    Pfeuffer, F.2    Klamroth, K.3
  • 8
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • T. Jaakkola, D. Haussler, et al. Exploiting generative models in discriminative classifiers. In NIPS, 1999.
    • (1999) NIPS
    • Jaakkola, T.1    Haussler, D.2
  • 9
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks that shout: distinctive parts for scene classification. In CVPR, 2013.
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.3    Zisserman, A.4
  • 10
    • 80053435765 scopus 로고    scopus 로고
    • Learning with whom to share in multi-task feature learning
    • Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In ICML, 2011.
    • (2011) ICML
    • Kang, Z.1    Grauman, K.2    Sha, F.3
  • 11
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 12
    • 84857419890 scopus 로고    scopus 로고
    • Task-driven dictionary learning
    • J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. TPAMI, 34(4):791-804, 2012.
    • (2012) TPAMI , vol.34 , Issue.4 , pp. 791-804
    • Mairal, J.1    Bach, F.2    Ponce, J.3
  • 13
    • 84897513685 scopus 로고    scopus 로고
    • Sparse coding for multitask and transfer learning
    • A. Maurer, M. Pontil, and B. Romera-Paredes. Sparse coding for multitask and transfer learning. In ICML, 2013.
    • (2013) ICML
    • Maurer, A.1    Pontil, M.2    Romera-Paredes, B.3
  • 15
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the Fisher vector: Theory and practice
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the Fisher vector: theory and practice. IJCV, pages 1-24, 2013.
    • (2013) IJCV , pp. 1-24
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 18
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. JMLR, 14:567-599, 2013.
    • (2013) JMLR , vol.14 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 19
    • 84863224200 scopus 로고    scopus 로고
    • Improving image classification using semantic attributes
    • Y. Su and F. Jurie. Improving image classification using semantic attributes. IJCV, 100(1):59-77, 2012.
    • (2012) IJCV , vol.100 , Issue.1 , pp. 59-77
    • Su, Y.1    Jurie, F.2
  • 21
    • 77955988947 scopus 로고    scopus 로고
    • SUN database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 22
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc., 67(2):301-320, 2005.
    • (2005) J. R. Stat. Soc. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.