메뉴 건너뛰기




Volumn 22, Issue 3, 2015, Pages 576-585

Short-term forecasting of soil temperature using artificial neural network

Author keywords

Air temperature; Daily soil temperature; Multilayer perceptron; Soil depth; Time series forecasting

Indexed keywords

EFFICIENCY; FORECASTING; MEAN SQUARE ERROR; MULTILAYER NEURAL NETWORKS; SOILS;

EID: 84936933519     PISSN: 13504827     EISSN: 14698080     Source Type: Journal    
DOI: 10.1002/met.1489     Document Type: Article
Times cited : (71)

References (44)
  • 1
    • 0034104554 scopus 로고    scopus 로고
    • The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean
    • Berberoglu S, Lloyd CD, Atkinson PM, Curran PJ. 2000. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput. Geosci. 26: 385-396.
    • (2000) Comput. Geosci. , vol.26 , pp. 385-396
    • Berberoglu, S.1    Lloyd, C.D.2    Atkinson, P.M.3    Curran, P.J.4
  • 2
    • 78650014065 scopus 로고    scopus 로고
    • Prediction of soil temperature using regression and artificial neural network models
    • Bilgili M. 2010. Prediction of soil temperature using regression and artificial neural network models. Meteorol. Atmos. Phys. 110: 59-70.
    • (2010) Meteorol. Atmos. Phys. , vol.110 , pp. 59-70
    • Bilgili, M.1
  • 3
    • 84871989698 scopus 로고    scopus 로고
    • Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models
    • Bilgili M, Sahin B, Sangun L. 2013. Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models. Environ. Monit. Assess. 185: 347-358.
    • (2013) Environ. Monit. Assess. , vol.185 , pp. 347-358
    • Bilgili, M.1    Sahin, B.2    Sangun, L.3
  • 4
    • 22444431530 scopus 로고    scopus 로고
    • Spatiotemporal measurement and modeling of stand-level boreal forest soil temperatures
    • Bond-Lamberty B, Wang C, Gower ST. 2005. Spatiotemporal measurement and modeling of stand-level boreal forest soil temperatures. Agric. For. Meteorol. 131: 27-40.
    • (2005) Agric. For. Meteorol. , vol.131 , pp. 27-40
    • Bond-Lamberty, B.1    Wang, C.2    Gower, S.T.3
  • 5
    • 0025889287 scopus 로고
    • In Cold Regions Engineering, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, Sodhi DC (ed), American Society of Civil Engineers: New York, NY
    • Braley WA, Zarling JP. 1991. MUT1D: user-friendly one-dimensional thermal model. In Cold Regions Engineering, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, Sodhi DC (ed), American Society of Civil Engineers: New York, NY; 1-10.
    • (1991) MUT1D: user-friendly one-dimensional thermal model. , pp. 1-10
    • Braley, W.A.1    Zarling, J.P.2
  • 6
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL. 2006. Flood estimation at ungauged sites using artificial neural networks. J. Hydrol. 319: 391-409.
    • (2006) J. Hydrol. , vol.319 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 7
    • 0035424839 scopus 로고    scopus 로고
    • Prediction of soil temperature by using artificial neural networks algorithms
    • George RK. 2001. Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Anal. 47: 1737-1748.
    • (2001) Nonlinear Anal , vol.47 , pp. 1737-1748
    • George, R.K.1
  • 9
    • 84891640254 scopus 로고    scopus 로고
    • Daily soil temperature modeling using neuro-fuzzy approach
    • Hosseinzadeh Talaee P. 2014. Daily soil temperature modeling using neuro-fuzzy approach. Theor. Appl. Climatol. 118: 481-489, DOI: 10.1007/s00704-013-1084-9.
    • (2014) Theor. Appl. Climatol. , vol.118 , pp. 481-489
    • Hosseinzadeh Talaee, P.1
  • 10
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall runoff process
    • Hsu KL, Gupta HV, Sorooshian S. 1995. Artificial neural network modeling of the rainfall runoff process. Water Resour. Res. 31(10): 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 12
    • 40949103966 scopus 로고    scopus 로고
    • Measuring soil temperature and moisture using wireless MEMS sensors
    • Jackson T, Mansfield K, Saafi M, Colman T, Romine P. 2008. Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 41: 381-390.
    • (2008) Measurement , vol.41 , pp. 381-390
    • Jackson, T.1    Mansfield, K.2    Saafi, M.3    Colman, T.4    Romine, P.5
  • 13
    • 84876427289 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using different data-driven methods and lag-time patterns
    • Kim S, Shiri J, Kisi O, Singh VP. 2013. Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour. Manage. 27: 2267-2286.
    • (2013) Water Resour. Manage. , vol.27 , pp. 2267-2286
    • Kim, S.1    Shiri, J.2    Kisi, O.3    Singh, V.P.4
  • 14
    • 84891500343 scopus 로고    scopus 로고
    • Modeling daily soil temperature using data-driven models and spatial distribution
    • Kim S, Singh VP. 2014. Modeling daily soil temperature using data-driven models and spatial distribution. Theor. Appl. Climatol. 118: 465-479, DOI: 10.1007/s00704-013-1065-z.
    • (2014) Theor. Appl. Climatol. , vol.118 , pp. 465-479
    • Kim, S.1    Singh, V.P.2
  • 15
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi O. 2007. Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 12(5): 532-539.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 16
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi O. 2008. Stream flow forecasting using neuro-wavelet technique. Hydrol. Processes 22: 4142-4152.
    • (2008) Hydrol. Processes , vol.22 , pp. 4142-4152
    • Kisi, O.1
  • 17
    • 84887318010 scopus 로고    scopus 로고
    • Estimation of dew point temperature using neuro-fuzzy and neural network techniques
    • Kisi O, Kim S, Shiri J. 2013a. Estimation of dew point temperature using neuro-fuzzy and neural network techniques. Theor. Appl. Climatol. 114: 365-373.
    • (2013) Theor. Appl. Climatol. , vol.114 , pp. 365-373
    • Kisi, O.1    Kim, S.2    Shiri, J.3
  • 18
    • 84857912130 scopus 로고    scopus 로고
    • Forecasting daily lake levels using artificial intelligence approaches
    • Kisi O, Shiri J, Nikoofar B. 2012. Forecasting daily lake levels using artificial intelligence approaches. Comput. Geosci. 41: 169-180.
    • (2012) Comput. Geosci. , vol.41 , pp. 169-180
    • Kisi, O.1    Shiri, J.2    Nikoofar, B.3
  • 19
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • Kisi O, Shiri J, Tombul M. 2013b. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 51: 108-117.
    • (2013) Comput. Geosci. , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Tombul, M.3
  • 20
    • 84931568449 scopus 로고    scopus 로고
    • Modeling soil temperatures at different depths by using three different neural computing techniques
    • Kisi O, Tombul M, Kermani MZ. 2014. Modeling soil temperatures at different depths by using three different neural computing techniques. Theor. Appl. Climatol., DOI: 10.1007/s00704-014-1232-x.
    • (2014) Theor. Appl. Climatol.
    • Kisi, O.1    Tombul, M.2    Kermani, M.Z.3
  • 22
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Software 15: 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0036497467 scopus 로고    scopus 로고
    • On estimating soil surface temperature profiles
    • Mihalakakou G. 2002. On estimating soil surface temperature profiles. Energy Build. 34: 251-259.
    • (2002) Energy Build. , vol.34 , pp. 251-259
    • Mihalakakou, G.1
  • 25
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: 1. A discussion of principles
    • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: 1. A discussion of principles. J. Hydrol. 10: 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 27
    • 79960795064 scopus 로고    scopus 로고
    • Artificial neural network model for estimating the soil temperature
    • Ozturk M, Salman O, Koc M. 2011. Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci. 91: 551-562.
    • (2011) Can. J. Soil Sci. , vol.91 , pp. 551-562
    • Ozturk, M.1    Salman, O.2    Koc, M.3
  • 28
    • 0036786874 scopus 로고    scopus 로고
    • Simple model for 10cm soil temperature in different soils with short grass
    • Plauborg F. 2002. Simple model for 10cm soil temperature in different soils with short grass. Eur. J. Agron. 17: 173-179.
    • (2002) Eur. J. Agron. , vol.17 , pp. 173-179
    • Plauborg, F.1
  • 29
  • 31
    • 4444277916 scopus 로고    scopus 로고
    • Wintertime temperature in the fine-textured soils of the Saginaw valley, Michigan
    • Schaetzl RJ, Tomczak DM. 2001. Wintertime temperature in the fine-textured soils of the Saginaw valley, Michigan. Great Lakes Geogr. 8: 87-98.
    • (2001) Great Lakes Geogr. , vol.8 , pp. 87-98
    • Schaetzl, R.J.1    Tomczak, D.M.2
  • 32
    • 84908614016 scopus 로고    scopus 로고
    • State of the art of artificial neural networks in geotechnical engineering
    • Shahin MA, Jaksa MB, Maier HR. 2008. State of the art of artificial neural networks in geotechnical engineering. Electr. J. Geotech. Eng. 8: 1-26.
    • (2008) Electr. J. Geotech. Eng. , vol.8 , pp. 1-26
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 33
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin AY. 1997. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199: 272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 34
    • 84899493198 scopus 로고    scopus 로고
    • Estimation of daily dew point temperature using genetic programming and neural networks approaches
    • Shiri J, Kim S, Kisi O. 2014a. Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrol. Res. 45(2): 165-181.
    • (2014) Hydrol. Res. , vol.45 , Issue.2 , pp. 165-181
    • Shiri, J.1    Kim, S.2    Kisi, O.3
  • 35
    • 84926613397 scopus 로고    scopus 로고
    • Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k-fold testing
    • Shiri J, Marti P, Nazemi AH, Sadraddini AA, Kisi O, Lenderas G, et al. 2013. Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k-fold testing. Hydrol. Res., DOI: 10.2166/nh.2013.112.
    • (2013) Hydrol. Res.
    • Shiri, J.1    Marti, P.2    Nazemi, A.H.3    Sadraddini, A.A.4    Kisi, O.5    Lenderas, G.6
  • 36
    • 84908091793 scopus 로고    scopus 로고
    • Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran
    • Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi K, Fakheri Fard A, et al. 2014b. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 108: 230-241.
    • (2014) Comput. Electron. Agric. , vol.108 , pp. 230-241
    • Shiri, J.1    Nazemi, A.H.2    Sadraddini, A.A.3    Landeras, G.4    Kisi, K.5    Fakheri Fard, A.6
  • 38
    • 84880729160 scopus 로고    scopus 로고
    • Multilayer perceptron for reference evapotranspiration estimation in a semiarid region
    • Tabari H, Hosseinzadeh Talaee P. 2013. Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Comput. Appl. 23(2): 341-348.
    • (2013) Neural Comput. Appl. , vol.23 , Issue.2 , pp. 341-348
    • Tabari, H.1    Hosseinzadeh Talaee, P.2
  • 39
    • 77953692036 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression
    • Tabari H, Marofi S, Sabziparvar AA. 2010. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig. Sci. 28: 399-406.
    • (2010) Irrig. Sci. , vol.28 , pp. 399-406
    • Tabari, H.1    Marofi, S.2    Sabziparvar, A.A.3
  • 40
    • 78650738248 scopus 로고    scopus 로고
    • Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
    • Tabari H, Sabziparvar AA, Ahmadi M. 2011. Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteorol. Atmos. Phys. 110: 135-142.
    • (2011) Meteorol. Atmos. Phys. , vol.110 , pp. 135-142
    • Tabari, H.1    Sabziparvar, A.A.2    Ahmadi, M.3
  • 42
  • 43
    • 84866064802 scopus 로고    scopus 로고
    • Stream flow forecasting using Levenberg-Marquardt algorithm approach
    • Yadav D, Naresh R, Sharma V. 2011. Stream flow forecasting using Levenberg-Marquardt algorithm approach. Int. J. Water Resour. Environ. Eng. 3(1): 30-40.
    • (2011) Int. J. Water Resour. Environ. Eng. , vol.3 , Issue.1 , pp. 30-40
    • Yadav, D.1    Naresh, R.2    Sharma, V.3
  • 44
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba H, Anctil F, Fortin V. 2010. Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J. Hydrol. Eng. 15(4): 275-283.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.4 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.