메뉴 건너뛰기




Volumn 13, Issue I, 2008, Pages 1-25

State of the art of artificial neural networks in xengineering

Author keywords

Artificial intelligence; Artificial neural networks; Geotechnical engineering

Indexed keywords

ARTIFICIAL INTELLIGENCE; GEOTECHNICAL ENGINEERING;

EID: 84908614016     PISSN: None     EISSN: 10893032     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (146)

References (190)
  • 1
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • Abu-Kiefa, M. A. (1998). "General regression neural networks for driven piles in cohesionless soils." Journal of Geotechnical & Geoenviromental Engineering, ASCE, 124(12), 1177-1185.
    • (1998) Journal of Geotechnical & Geoenviromental Engineering, ASCE , vol.124 , Issue.12 , pp. 1177-1185
    • Abu-Kiefa, M.A.1
  • 3
    • 0030703042 scopus 로고    scopus 로고
    • Assessing the liquefaction susceptibility at a site based on information from penetration testing
    • N. Kartam, I. Flood, and J. H. Garrett, eds., New York
    • Agrawal, G., Chameau, J. A., and Bourdeau, P. L. (1997). "Assessing the liquefaction susceptibility at a site based on information from penetration testing." Artificial neural networks for civil engineers: Fundamentals and applications, N. Kartam, I. Flood, and J. H. Garrett, eds., New York, 185-214.
    • (1997) Artificial neural networks for civil engineers: Fundamentals and applications , pp. 185-214
    • Agrawal, G.1    Chameau, J.A.2    Bourdeau, P.L.3
  • 5
    • 34247132993 scopus 로고    scopus 로고
    • Artificial neural network application to estimate kinematic soil pile interaction response parameters
    • Ahmad, I., El Naggar, H., and Kahn, A. N. (2007). "Artificial neural network application to estimate kinematic soil pile interaction response parameters." Soil Dynamics and Earthquake Engineering, 27(9), 892-905.
    • (2007) Soil Dynamics and Earthquake Engineering , vol.27 , Issue.9 , pp. 892-905
    • Ahmad, I.1    El Naggar, H.2    Kahn, A.N.3
  • 6
    • 0032157672 scopus 로고    scopus 로고
    • Neuronet-based approach for assessing liquefaction potential of soils
    • Ali, H. E., and Najjar, Y. M. (1998). "Neuronet-based approach for assessing liquefaction potential of soils." Transportation Research Record No. 1633, 3-8.
    • (1998) Transportation Research Record No. 1633 , pp. 3-8
    • Ali, H.E.1    Najjar, Y.M.2
  • 8
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE. (2000). "Artificial neural networks in hydrology. I: Preliminary concepts." J. Hydrologic Engineering, 5(2), 115-123.
    • (2000) J. Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
  • 9
    • 0004017319 scopus 로고    scopus 로고
    • Neuromechanistic-based modeling and simulation of constitutive behaviour of fine-grained soils
    • PhD Thesis, Kansas State University, Manhattan, KS
    • Basheer, I. A. (1998). "Neuromechanistic-based modeling and simulation of constitutive behaviour of fine-grained soils," PhD Thesis, Kansas State University, Manhattan, KS.
    • (1998)
    • Basheer, I.A.1
  • 10
    • 0034325073 scopus 로고    scopus 로고
    • Selection of methodology for neural network modeling of constitutive hysteresis behavior of soils
    • Basheer, I. A. (2000). "Selection of methodology for neural network modeling of constitutive hysteresis behavior of soils." Computer-Aided Civil and Infrastructure Engineering, 15(6), 445-463.
    • (2000) Computer-Aided Civil and Infrastructure Engineering , vol.15 , Issue.6 , pp. 445-463
    • Basheer, I.A.1
  • 11
    • 0036563902 scopus 로고    scopus 로고
    • Stress-strain behavior of geomaterials in loading reversal simulated by time-delay neural networks
    • Basheer, I. A. (2002). "Stress-strain behavior of geomaterials in loading reversal simulated by time-delay neural networks." Journal of Materials in Civil Engineering, 14(3), 270-273.
    • (2002) Journal of Materials in Civil Engineering , vol.14 , Issue.3 , pp. 270-273
    • Basheer, I.A.1
  • 12
    • 0013444364 scopus 로고    scopus 로고
    • Modeling cyclic constitutive behavior by neural networks: Theoretical and real data
    • La Jolla, California
    • Basheer, I. A., and Najjar, Y. M. (1998). "Modeling cyclic constitutive behavior by neural networks: Theoretical and real data." Proceedings of the 12th Engineering Mechanics Conference, La Jolla, California, 952-955.
    • (1998) Proceedings of the 12th Engineering Mechanics Conference , pp. 952-955
    • Basheer, I.A.1    Najjar, Y.M.2
  • 13
    • 0030195319 scopus 로고    scopus 로고
    • Site characterization by neuronets: An application to the landfill sitting problem
    • Basheer, I. A., Reddi, L. N., and Najjar, Y. M. (1996). "Site characterization by neuronets: An application to the landfill sitting problem." Ground Water, 34, 610-617.
    • (1996) Ground Water , vol.34 , pp. 610-617
    • Basheer, I.A.1    Reddi, L.N.2    Najjar, Y.M.3
  • 14
    • 10644296344 scopus 로고    scopus 로고
    • Evaluation of lateral spreading using artificial neural networks
    • Baziar, M. H., and Ghorbani, A. (2005). "Evaluation of lateral spreading using artificial neural networks." Soil Dynamics and Earthquake Engineering, 25(1), 1-9.
    • (2005) Soil Dynamics and Earthquake Engineering , vol.25 , Issue.1 , pp. 1-9
    • Baziar, M.H.1    Ghorbani, A.2
  • 15
    • 0028516118 scopus 로고
    • Feed-forward neural networks: Why network size is so important
    • October/November
    • Bebis, G., and Georgiopoulos, M. (1994). "Feed-forward neural networks: Why network size is so important." IEEE Potentials, October/November, 27-31.
    • (1994) IEEE Potentials , pp. 27-31
    • Bebis, G.1    Georgiopoulos, M.2
  • 17
    • 0041465359 scopus 로고
    • Application of neural networks in structural optimization
    • I-II
    • Berke, L., and Hajela, P. (1991). "Application of neural networks in structural optimization." NATO/AGARD Advanced Study Institute, 23(I-II), 731-745.
    • (1991) NATO/AGARD Advanced Study Institute , vol.23 , pp. 731-745
    • Berke, L.1    Hajela, P.2
  • 18
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications: Part 1-Background and methodology
    • Bowden, G. J., Dandy, G. C., and Maier, H. R. (2005). "Input determination for neural network models in water resources applications: Part 1-Background and methodology." Journal of Hydrology, 301(1-4), 75-92.
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 19
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden, G. J., Maier, H. R., and Dandy, G. C. (2002). "Optimal division of data for neural network models in water resources applications." Water Resources Research, 38(2), 2.1-2.11.
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 21-211
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 20
    • 0031851620 scopus 로고    scopus 로고
    • Feed-forward artificial neural network model for forecasting rainfall run-off
    • Braddock, R. D., Kremmer, M. L., and Sanzogni, L. (1998). "Feed-forward artificial neural network model for forecasting rainfall run-off." Environmetrics, 9, 419-432.
    • (1998) Environmetrics , vol.9 , pp. 419-432
    • Braddock, R.D.1    Kremmer, M.L.2    Sanzogni, L.3
  • 21
    • 84972493978 scopus 로고
    • Comment on 'Neural networks: A review from a statistical by B. Cheng and D. M. Titterington
    • Breiman, L. (1994). "Comment on 'Neural networks: A review from a statistical by B. Cheng and D. M. Titterington." Statistical Science, 9(1), 38-42.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 38-42
    • Breiman, L.1
  • 23
  • 24
    • 0026852344 scopus 로고
    • Neural networks and operations research: An overview
    • Burke, L. I., and Ignizio, J. P. (1992). "Neural networks and operations research: An overview." Computer and Operations Research, 19(3/4), 179-189.
    • (1992) Computer and Operations Research , vol.19 , Issue.3-4 , pp. 179-189
    • Burke, L.I.1    Ignizio, J.P.2
  • 25
    • 0028449105 scopus 로고
    • Neural network based objective flow regime identification in air-water two phase flow
    • Cai, S., Toral, H., Qiu, J., and Archer, J. S. (1994). "Neural network based objective flow regime identification in air-water two phase flow." Canadian Journal of Chemical Engineering, 72, 440-445.
    • (1994) Canadian Journal of Chemical Engineering , vol.72 , pp. 440-445
    • Cai, S.1    Toral, H.2    Qiu, J.3    Archer, J.S.4
  • 26
    • 0005210482 scopus 로고
    • Soil classification by neural-network
    • Cal, Y. (1995). "Soil classification by neural-network." Advances in Engineering Software, 22(2), 95-97.
    • (1995) Advances in Engineering Software , vol.22 , Issue.2 , pp. 95-97
    • Cal, Y.1
  • 27
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low-flow periods using neural networks
    • Campolo, M., Soldati, A., and Andreussi, P. (1999). "Forecasting river flow rate during low-flow periods using neural networks." Water Resources Research, 35(11), 3547-3552.
    • (1999) Water Resources Research , vol.35 , Issue.11 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 29
    • 0005380346 scopus 로고
    • Neural networks primer, Part III
    • Caudill, M. (1988). "Neural networks primer, Part III." AI Expert, 3(6), 53-59.
    • (1988) AI Expert , vol.3 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 30
    • 30844447472 scopus 로고    scopus 로고
    • Determination of pre-consolidation pressure with artificial neural network
    • Celik, S., and Tan, O. (2005). "Determination of pre-consolidation pressure with artificial neural network." Civil Engineering and Environmental Systems, 22(4), 217-231.
    • (2005) Civil Engineering and Environmental Systems , vol.22 , Issue.4 , pp. 217-231
    • Celik, S.1    Tan, O.2
  • 31
    • 0028977232 scopus 로고
    • Neural network: An alternative to pile driving formulas
    • Chan, W. T., Chow, Y. K., and Liu, L. F. (1995). "Neural network: An alternative to pile driving formulas." Computers and Geotechnics, 17, 135-156.
    • (1995) Computers and Geotechnics , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, Y.K.2    Liu, L.F.3
  • 32
    • 33750975874 scopus 로고    scopus 로고
    • The displacement computation and construction pre-control of a foundation pit in Shanghai utilizing FEM and intelligent methods
    • Chen, Y., Azzam, R., and Zhang, F. (2006). "The displacement computation and construction pre-control of a foundation pit in Shanghai utilizing FEM and intelligent methods." Geotechnical and Geological Engineering, 24(6), 1781-1801.
    • (2006) Geotechnical and Geological Engineering , vol.24 , Issue.6 , pp. 1781-1801
    • Chen, Y.1    Azzam, R.2    Zhang, F.3
  • 34
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal function." Mathematics of Control, Signals, and Systems, 3, 303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.3 , pp. 303-314
    • Cybenko, G.1
  • 35
    • 37849189166 scopus 로고    scopus 로고
    • Undrained lateral load capacity of piles in clay using artificial neural network
    • Das, S. K., and Basudhar, P. K. (2006). "Undrained lateral load capacity of piles in clay using artificial neural network." Computers and Geotechnics, 33(8), 454-459.
    • (2006) Computers and Geotechnics , vol.33 , Issue.8 , pp. 454-459
    • Das, S.K.1    Basudhar, P.K.2
  • 38
    • 38849209843 scopus 로고    scopus 로고
    • Artificial neural networks approach for swell pressure versus soil suction behavior
    • Erzin, Y. (2007). "Artificial neural networks approach for swell pressure versus soil suction behavior." Canadian Geotechnical Journal, 44(10), 1215-1223.
    • (2007) Canadian Geotechnical Journal , vol.44 , Issue.10 , pp. 1215-1223
    • Erzin, Y.1
  • 40
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky, ed., Morgan Kaufmann, San Mateo, California
    • Fahlman, S. E., and Lebiere, C. (1990). "The cascade-correlation learning architecture." Advances in Neural Information Processing Systems 2, D. S. Touretzky, ed., Morgan Kaufmann, San Mateo, California, 524-532.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 41
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway, J., and Chatfield, C. (1998). "Time series forecasting with neural networks: A comparative study using the airline data." Applied Statistics, 47(2), 231-250.
    • (1998) Applied Statistics , vol.47 , Issue.2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 42
    • 0003710566 scopus 로고
    • algorithms, and applications, Prentice-Hall, Englewood Cliffs, New Jersey
    • Fausett, L. V. (1994). Fundamentals neural networks: Architecture, algorithms, and applications, Prentice-Hall, Englewood Cliffs, New Jersey.
    • (1994) Fundamentals neural networks: Architecture
    • Fausett, L.V.1
  • 43
    • 33645963421 scopus 로고    scopus 로고
    • Identification of viscoelastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm
    • Feng, X. T., Chen, B., Yang, C., Zhou, H., and Ding, X. (2006). "Identification of viscoelastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm." International Journal of Rock Mechanics and Mining Sciences, 43(5), 789-801.
    • (2006) International Journal of Rock Mechanics and Mining Sciences , vol.43 , Issue.5 , pp. 789-801
    • Feng, X.T.1    Chen, B.2    Yang, C.3    Zhou, H.4    Ding, X.5
  • 44
    • 34848842523 scopus 로고    scopus 로고
    • Computational intelligence tools for the prediction of slope performance
    • Ferentinou, M. D., and Sakellariou, M. G. (2007). "Computational intelligence tools for the prediction of slope performance." Computers and Geotechnics, 34(5), 362-384.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 362-384
    • Ferentinou, M.D.1    Sakellariou, M.G.2
  • 45
    • 0027072041 scopus 로고
    • A Gaussian-based neural network architecture and complementary training algorithm
    • New York
    • Flood, I. (1991). "A Gaussian-based neural network architecture and complementary training algorithm." Proceedings of the International Joint Conference on Neural Networks, New York, 171-176.
    • (1991) Proceedings of the International Joint Conference on Neural Networks , pp. 171-176
    • Flood, I.1
  • 46
    • 0028416331 scopus 로고
    • Neural networks in civil engineering I: Principles and understanding
    • Flood, I., and Kartam, N. (1994). "Neural networks in civil engineering I: Principles and understanding." Journal of Computing in Civil Engineering, 8(2), 131-148.
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 47
    • 0001573780 scopus 로고    scopus 로고
    • Comment on 'The use of artificial neural networks for the prediction of water quality parameters' by H. R. Maier and G. C. Dandy
    • Fortin, V., Ouarda, T. B. M. J., and Bobee, B. (1997). "Comment on 'The use of artificial neural networks for the prediction of water quality parameters' by H. R. Maier and G. C. Dandy." Water Resources Research, 33(10), 2423-22424.
    • (1997) Water Resources Research , vol.33 , Issue.10 , pp. 2423-22424
    • Fortin, V.1    Ouarda, T.B.M.J.2    Bobee, B.3
  • 48
    • 34848891893 scopus 로고    scopus 로고
    • Integration of laboratory testing and constitutive modeling of soils
    • Fu, Q., Hashash, Y. M. A., Hung, S., and Ghaboussi, J. (2007). "Integration of laboratory testing and constitutive modeling of soils." Computers and Geotechnics, 34(5), 330-345.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 330-345
    • Fu, Q.1    Hashash, Y.M.A.2    Hung, S.3    Ghaboussi, J.4
  • 49
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences
    • Gardner, M. W., and Dorling, S. R. (1998). "Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences." Atmospheric Environment, 32(14/15), 2627-2636.
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 50
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson, G. D. (1991). "Interpreting neural-network connection weights." AI Expert, 6(7), 47-51.
    • (1991) AI Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 51
    • 0031917757 scopus 로고    scopus 로고
    • New nested adaptive neural networks (NANN) for constitutive modeling
    • Ghaboussi, J., and Sidarta, D. E. (1998). "New nested adaptive neural networks (NANN) for constitutive modeling." Computers and Geotechnics, 22(1), 29-52.
    • (1998) Computers and Geotechnics , vol.22 , Issue.1 , pp. 29-52
    • Ghaboussi, J.1    Sidarta, D.E.2
  • 52
    • 0035673991 scopus 로고    scopus 로고
    • A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination
    • Giraudel, J. L., and Lek, S. (2001). "A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination." Ecological Modeling, 146, 329-339.
    • (2001) Ecological Modeling , vol.146 , pp. 329-339
    • Giraudel, J.L.1    Lek, S.2
  • 53
    • 0036009678 scopus 로고    scopus 로고
    • Probabilistic neural network for evaluating seismic liquefaction potential
    • Goh, A. T. (2002). "Probabilistic neural network for evaluating seismic liquefaction potential." Canadian Geotechnical Journal, 39(1), 219-232.
    • (2002) Canadian Geotechnical Journal , vol.39 , Issue.1 , pp. 219-232
    • Goh, A.T.1
  • 54
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh, A. T., and Goh, S. H. (2007). "Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data." Computers and Geotechnics, 34(5), 410-421.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.T.1    Goh, S.H.2
  • 56
    • 0028549824 scopus 로고
    • Nonlinear modeling in geotechnical engineering using neural networks
    • Goh, A. T. C. (1994a). "Nonlinear modeling in geotechnical engineering using neural networks." Australian Civil Engineering Transactions, CE36(4), 293-297.
    • (1994) Australian Civil Engineering Transactions , vol.CE36 , Issue.4 , pp. 293-297
    • Goh, A.T.C.1
  • 58
    • 0029415865 scopus 로고
    • Empirical design in geotechnics using neural networks
    • Goh, A. T. C. (1995a). "Empirical design in geotechnics using neural networks." Geotechnique, 45(4), 709-714.
    • (1995) Geotechnique , vol.45 , Issue.4 , pp. 709-714
    • Goh, A.T.C.1
  • 59
    • 0029415712 scopus 로고
    • Modeling soil correlations using neural networks
    • Goh, A. T. C. (1995b). "Modeling soil correlations using neural networks." Journal of Computing in Civil Engineering, ASCE, 9(4), 275-278.
    • (1995) Journal of Computing in Civil Engineering, ASCE , vol.9 , Issue.4 , pp. 275-278
    • Goh, A.T.C.1
  • 60
    • 0030403486 scopus 로고    scopus 로고
    • Neural-network modeling of CPT seismic liquefaction data
    • Goh, A. T. C. (1996a). "Neural-network modeling of CPT seismic liquefaction data." Journal of Geotechnical Engineering, ASCE, 122(1), 70-73.
    • (1996) Journal of Geotechnical Engineering, ASCE , vol.122 , Issue.1 , pp. 70-73
    • Goh, A.T.C.1
  • 61
    • 0030414004 scopus 로고    scopus 로고
    • Pile driving records reanalyzed using neural networks
    • Goh, A. T. C. (1996b). "Pile driving records reanalyzed using neural networks." Journal of Geotechnical Engineering, ASCE, 122(6), 492-495.
    • (1996) Journal of Geotechnical Engineering, ASCE , vol.122 , Issue.6 , pp. 492-495
    • Goh, A.T.C.1
  • 62
    • 0442296417 scopus 로고    scopus 로고
    • Neural network approach to model the limit state surface for reliability analysis
    • Goh, A. T. C., and Kulhawy, F. H. (2003). "Neural network approach to model the limit state surface for reliability analysis." Canadian Geotechnical Journal, 40(1235-1244), 6.
    • (2003) Canadian Geotechnical Journal , vol.40 , Issue.1235-1244 , pp. 6
    • Goh, A.T.C.1    Kulhawy, F.H.2
  • 63
    • 0029416085 scopus 로고
    • Estimation of lateral wall movements in braced excavation using neural networks
    • Goh, A. T. C., Wong, K. S., and Broms, B. B. (1995). "Estimation of lateral wall movements in braced excavation using neural networks." Canadian Geotechnical Journal, 32, 1059-1064.
    • (1995) Canadian Geotechnical Journal , vol.32 , pp. 1059-1064
    • Goh, A.T.C.1    Wong, K.S.2    Broms, B.B.3
  • 64
    • 3142656652 scopus 로고    scopus 로고
    • A neuro-fuzzy model for modulus of deformation of jointed rock masses
    • Gokceoglu, C., Yesilnacar, E., Sonmez, H., and Kayabasi, A. (2004). "A neuro-fuzzy model for modulus of deformation of jointed rock masses." Computers and Geotechncis, 31(5), 375-383.
    • (2004) Computers and Geotechncis , vol.31 , Issue.5 , pp. 375-383
    • Gokceoglu, C.1    Yesilnacar, E.2    Sonmez, H.3    Kayabasi, A.4
  • 66
    • 0042324284 scopus 로고    scopus 로고
    • A neural network framework for mechanical behavior of unsaturated soils
    • Habibagahi, G., and Bamdad, A. (2003). "A neural network framework for mechanical behavior of unsaturated soils." Canadian Geotechnical Journal, 40(3), 684-693.
    • (2003) Canadian Geotechnical Journal , vol.40 , Issue.3 , pp. 684-693
    • Habibagahi, G.1    Bamdad, A.2
  • 68
    • 0027627965 scopus 로고
    • Working with neural networks
    • Hammerstrom, D. (1993). "Working with neural networks." IEEE Spectrum, 30(7), 46-53.
    • (1993) IEEE Spectrum , vol.30 , Issue.7 , pp. 46-53
    • Hammerstrom, D.1
  • 69
    • 15544381564 scopus 로고    scopus 로고
    • Efficiency of pile groups installed in cohesionless soil using artificial neural networks
    • Hanna, A. M., Morcous, G., and Helmy, M. (2004). "Efficiency of pile groups installed in cohesionless soil using artificial neural networks." Canadian Geotechnical Journal, 41(6), 1241-1249.
    • (2004) Canadian Geotechnical Journal , vol.41 , Issue.6 , pp. 1241-1249
    • Hanna, A.M.1    Morcous, G.2    Helmy, M.3
  • 70
    • 33846833664 scopus 로고    scopus 로고
    • Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data
    • Hanna, A. M., Ural, D., and Saygili, G. (2007). "Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data." Soil Dynamics and Earthquake Engineering, 27(6), 521-540.
    • (2007) Soil Dynamics and Earthquake Engineering , vol.27 , Issue.6 , pp. 521-540
    • Hanna, A.M.1    Ural, D.2    Saygili, G.3
  • 75
    • 0004199140 scopus 로고
    • Addison-Wesely Publishing Company, Reading, MA
    • Hecht-Nielsen, R. (1990). Neurocomputing, Addison-Wesely Publishing Company, Reading, MA.
    • (1990) Neurocomputing
    • Hecht-Nielsen, R.1
  • 76
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H. (1989). "Multilayer feed-forward networks are universal approximators." Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 77
    • 85032752004 scopus 로고
    • Progress in supervised neural networks
    • Hush, D. R., and Horne, B. G. (1993). "Progress in supervised neural networks." IEEE SP Magazine, 10(1), 8-39.
    • (1993) IEEE SP Magazine , vol.10 , Issue.1 , pp. 8-39
    • Hush, D.R.1    Horne, B.G.2
  • 78
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., Sudheer, K. P., and Srinivasulu, S. (2004). "Identification of physical processes inherent in artificial neural network rainfall runoff models." Hydrological Processes, 18(3), 571-581.
    • (2004) Hydrological Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 79
    • 33747786653 scopus 로고    scopus 로고
    • Evaluation of liquefaction induced lateral displacements using genetic programming
    • Javadi, A., Rezania, M., and Mousavi, N. M. (2006). "Evaluation of liquefaction induced lateral displacements using genetic programming." Computers and Geotechnics, 33(4-5), 222-233.
    • (2006) Computers and Geotechnics , vol.33 , Issue.4-5 , pp. 222-233
    • Javadi, A.1    Rezania, M.2    Mousavi, N.M.3
  • 81
    • 0033131832 scopus 로고    scopus 로고
    • CPT-based liquefaction evaluation using artificial neural networks
    • Juang, C. H., and Chen, C. J. (1999). "CPT-based liquefaction evaluation using artificial neural networks." Computer-Aided Civil and Infrastructure Engineering, 14(3), 221-229.
    • (1999) Computer-Aided Civil and Infrastructure Engineering , vol.14 , Issue.3 , pp. 221-229
    • Juang, C.H.1    Chen, C.J.2
  • 82
    • 0025447562 scopus 로고
    • A simple procedure for pruning back-propagation trained neural networks
    • Karnin, E. D. (1990). "A simple procedure for pruning back-propagation trained neural networks." IEEE Transactions on Neural Networks, 1(2), 239-242.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.2 , pp. 239-242
    • Karnin, E.D.1
  • 83
    • 84947630316 scopus 로고
    • ASMOD-An algorithm for adaptive spline modeling of observation data
    • Kavli, T. (1993). "ASMOD-An algorithm for adaptive spline modeling of observation data." International Journal of Control, 58(4), 947-967.
    • (1993) International Journal of Control , vol.58 , Issue.4 , pp. 947-967
    • Kavli, T.1
  • 84
    • 33751206829 scopus 로고    scopus 로고
    • Use of artificial neural networks in the prediction of liquefaction resistance of sands
    • Kim, Y., and Kim, B. (2006). "Use of artificial neural networks in the prediction of liquefaction resistance of sands." Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1502-1504.
    • (2006) Journal of Geotechnical and Geoenvironmental Engineering , vol.132 , Issue.11 , pp. 1502-1504
    • Kim, Y.1    Kim, B.2
  • 85
    • 42949174752 scopus 로고    scopus 로고
    • Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model
    • Kim, Y., and Kim, B. (2008). "Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model." Computers and Geotechnics, 35(3), 313-322.
    • (2008) Computers and Geotechnics , vol.35 , Issue.3 , pp. 313-322
    • Kim, Y.1    Kim, B.2
  • 86
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian parameter estimation applied to artificial neural networks used for hydrological modeling
    • Kingston, G. B., Lambert, M. F., and Maier, H. R. (2005a). "Bayesian parameter estimation applied to artificial neural networks used for hydrological modeling." Water Resources Research, 41(W12409), doi:10.1029/2005WR004152.
    • (2005) Water Resources Research , vol.41 , Issue.W12409
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 87
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modeling
    • Kingston, G. B., Maier, H. R., and Lambert, M. F. (2005b). "Calibration and validation of neural networks to ensure physically plausible hydrological modeling." Journal of Hydrology, 314(2005), 158-176.
    • (2005) Journal of Hydrology , vol.314 , Issue.2005 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 88
    • 33745367041 scopus 로고    scopus 로고
    • A probabilistic method to assist knowledge extraction from artificial neural networks used for hyrdological prediction
    • Kingston, G. B., Maier, H. R., and Lambert, M. F. (2006). "A probabilistic method to assist knowledge extraction from artificial neural networks used for hyrdological prediction." Mathematical and Computer Modeling, 44(5-6), 499-512.
    • (2006) Mathematical and Computer Modeling , vol.44 , Issue.5-6 , pp. 499-512
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 89
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian model selection applied to artificial neural networks used for water resources modeling
    • Kingston, G. B., Maier, H. R., and Lambert, M. F. (2008). "Bayesian model selection applied to artificial neural networks used for water resources modeling." Water Resources Research, 44(W04419), doi:10.1029/2007WR006155.
    • (2008) Water Resources Research , vol.44 , Issue.W04419
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 90
    • 0034578871 scopus 로고    scopus 로고
    • Modeling of the river flow rate: The influence of the training set selection
    • Kocjancic, R., and Zupan, J. (2000). "Modeling of the river flow rate: The influence of the training set selection." Chemometric and Intelligent Laboratory Systems, 54, 21-34.
    • (2000) Chemometric and Intelligent Laboratory Systems , vol.54 , pp. 21-34
    • Kocjancic, R.1    Zupan, J.2
  • 91
    • 0010318699 scopus 로고
    • Neural network implementation of a medical diagnosis expert system
    • MS thesis, College of Engineering, University of Cincinnati
    • Kudrycki, T. P. (1988). "Neural network implementation of a medical diagnosis expert system," MS thesis, College of Engineering, University of Cincinnati.
    • (1988)
    • Kudrycki, T.P.1
  • 92
    • 34848863752 scopus 로고    scopus 로고
    • A neural network approach to estimating deflection of diaphram walls caused by excavation in clays
    • Kung, G. T., Hsiao, E. C., Schuster, M., and Juang, C. H. (2007). "A neural network approach to estimating deflection of diaphram walls caused by excavation in clays." Computers and Geotechnics, 34(5), 385-396.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 385-396
    • Kung, G.T.1    Hsiao, E.C.2    Schuster, M.3    Juang, C.H.4
  • 93
    • 0036640616 scopus 로고    scopus 로고
    • Neural network for profiling stress history of clays from PCPT data
    • 2002
    • Kurup, P. U., and Dudani, N. K. (2002). "Neural network for profiling stress history of clays from PCPT data." 2002, 128(7), 569-579.
    • (2002) , vol.128 , Issue.7 , pp. 569-579
    • Kurup, P.U.1    Dudani, N.K.2
  • 94
    • 0001006264 scopus 로고
    • Back-propagation in hydrological time series forecasting
    • K. W. Hipel, A. I. McLeod, U. S. Panu, and V. P. Singh, eds., Kluwer Academic, Dordrecht
    • Lachtermacher, G., and Fuller, J. D. (1994). "Back-propagation in hydrological time series forecasting." Stochastic and Statistical Methods in Hydrology and Environmental Engineering, K. W. Hipel, A. I. McLeod, U. S. Panu, and V. P. Singh, eds., Kluwer Academic, Dordrecht.
    • (1994) Stochastic and Statistical Methods in Hydrology and Environmental Engineering
    • Lachtermacher, G.1    Fuller, J.D.2
  • 97
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural networks
    • Lee, I. M., and Lee, J. H. (1996). "Prediction of pile bearing capacity using artificial neural networks." Computers and Geotechnics, 18(3), 189-200.
    • (1996) Computers and Geotechnics , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 98
    • 0037490974 scopus 로고    scopus 로고
    • An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation
    • Lee, S. J., Lee, S. R., and Kim, Y. S. (2003). "An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation." Computers and Geotechnics, 30(6), 489-503.
    • (2003) Computers and Geotechnics , vol.30 , Issue.6 , pp. 489-503
    • Lee, S.J.1    Lee, S.R.2    Kim, Y.S.3
  • 99
    • 0041624274 scopus 로고    scopus 로고
    • Artificial neural network as an incremental nonlinear constitutive model for a finite element code
    • Lefik, M., and Schrefler, B. A. (2003). "Artificial neural network as an incremental nonlinear constitutive model for a finite element code." Computer Methods in Applied Mechanics and Engineering, 192(31-32), 3265-3283.
    • (2003) Computer Methods in Applied Mechanics and Engineering , vol.192 , Issue.31-32 , pp. 3265-3283
    • Lefik, M.1    Schrefler, B.A.2
  • 100
    • 17444389633 scopus 로고    scopus 로고
    • Underground blast induced ground shock and its modeling using artificial neural network
    • Lu, Y. (2005). "Underground blast induced ground shock and its modeling using artificial neural network." Computers and Geotechnics, 32(3), 164-178.
    • (2005) Computers and Geotechnics , vol.32 , Issue.3 , pp. 164-178
    • Lu, Y.1
  • 101
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • MacKay, G. (1992). "A practical Bayesian framework for back-propagation networks." Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, G.1
  • 102
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R., and Dandy, G. C. (2000). "Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications." Environmental Modeling & Software, 15(2000), 101-124.
    • (2000) Environmental Modeling & Software , vol.15 , Issue.2000 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 105
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May, R. J., Maier, H. R., Dandy, G. C., and Fernando, T. M. (2008). "Non-linear variable selection for artificial neural networks using partial mutual information." Environmental Modeling and Software, doi:10.1016/j.envsoft.2008.03.007.
    • (2008) Environmental Modeling and Software
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.4
  • 108
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W., and Hall, M. J. (1996). "Artificial neural networks as rainfall-runoff models." Hydrological Sciences Journal, 41(3), 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 109
    • 84894180554 scopus 로고
    • Artificial neural-network integrated with expert-system for preliminary design of tunnels and slopes
    • Rotterdam: Balkema
    • Moon, H. K., Na, S. M., and Lee, C. W. (1995). "Artificial neural-network integrated with expert-system for preliminary design of tunnels and slopes." Proceedings of the 8th International Congress on Rock Mechanics, Rotterdam: Balkema, 901-905.
    • (1995) Proceedings of the 8th International Congress on Rock Mechanics , pp. 901-905
    • Moon, H.K.1    Na, S.M.2    Lee, C.W.3
  • 110
    • 0031624390 scopus 로고    scopus 로고
    • CPT-based liquefaction potential assessment: A neuronet approach
    • Najjar, Y. M., and Ali, H. E. (1998). "CPT-based liquefaction potential assessment: A neuronet approach." ASCE Geotechnical Special Publication, 1, 542-553.
    • (1998) ASCE Geotechnical Special Publication , vol.1 , pp. 542-553
    • Najjar, Y.M.1    Ali, H.E.2
  • 113
    • 0029723312 scopus 로고    scopus 로고
    • Neural network approach for site characterization and uncertainty prediction
    • Najjar, Y. M., and Basheer, I. A. (1996). "Neural network approach for site characterization and uncertainty prediction." ASCE Geotechnical Special Publication, 58(1), 134-148.
    • (1996) ASCE Geotechnical Special Publication , vol.58 , Issue.1 , pp. 134-148
    • Najjar, Y.M.1    Basheer, I.A.2
  • 115
    • 0030458149 scopus 로고    scopus 로고
    • On the identification of compaction characteristics by neuronets
    • Najjar, Y. M., Basheer, I. A., and Naouss, W. A. (1996b). "On the identification of compaction characteristics by neuronets." Computers and Geotechnics, 18(3), 167-187.
    • (1996) Computers and Geotechnics , vol.18 , Issue.3 , pp. 167-187
    • Najjar, Y.M.1    Basheer, I.A.2    Naouss, W.A.3
  • 116
    • 34848828929 scopus 로고    scopus 로고
    • Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach
    • Najjar, Y. M., and Huang, C. (2007). "Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach." Computers and Geotechnics, 34(5), 346-362.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 346-362
    • Najjar, Y.M.1    Huang, C.2
  • 117
    • 33745661181 scopus 로고    scopus 로고
    • Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study
    • Narendara, B. S., Sivapullaiah, P. V., Suresh, S., and Omkar, S. N. (2006). "Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study." computers and Geotechnics, 33(3), 196-208.
    • (2006) computers and Geotechnics , vol.33 , Issue.3 , pp. 196-208
    • Narendara, B.S.1    Sivapullaiah, P.V.2    Suresh, S.3    Omkar, S.N.4
  • 118
    • 2442712661 scopus 로고    scopus 로고
    • Artificial intelligence techniques for the design and analysis of deep foundations
    • Nawari, N. O., Liang, R., and Nusairat, J. (1999). "Artificial intelligence techniques for the design and analysis of deep foundations." Electronic Journal of Geotechnical Engineering, http://geotech.civeng.okstate.edu/ejge/ppr9909.
    • (1999) Electronic Journal of Geotechnical Engineering
    • Nawari, N.O.1    Liang, R.2    Nusairat, J.3
  • 119
    • 1242344052 scopus 로고    scopus 로고
    • Some applications of a back-propagation neural network in geo-engineering
    • Neaupane, K., and Achet, S. (2004). "Some applications of a back-propagation neural network in geo-engineering." Environmental Geology, 45(4), 567-575.
    • (2004) Environmental Geology , vol.45 , Issue.4 , pp. 567-575
    • Neaupane, K.1    Achet, S.2
  • 120
    • 84869752702 scopus 로고    scopus 로고
    • NeuralWare Inc., Pittsburgh
    • NeuralWare. (1997). NeuralWorks Predict Release 2.1, NeuralWare Inc., Pittsburgh.
    • (1997) NeuralWorks Predict Release 2.1
  • 121
    • 19944397551 scopus 로고    scopus 로고
    • A fuzzy neural network approach to evaluation of slope failure potential
    • Ni, S. H., Lu, P. C., and Juang, C. H. (1996). "A fuzzy neural network approach to evaluation of slope failure potential." Journal of Microcomputers in Civil Engineering, 11, 59-66.
    • (1996) Journal of Microcomputers in Civil Engineering , vol.11 , pp. 59-66
    • Ni, S.H.1    Lu, P.C.2    Juang, C.H.3
  • 122
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden, J. D., Joy, M. K., and Death, R. G. (2004). "An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data." Ecological Modeling, 178(3-4), 389-397.
    • (2004) Ecological Modeling , vol.178 , Issue.3-4 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 123
    • 36749010178 scopus 로고    scopus 로고
    • Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models
    • Padmini, D., Ilamparuthi, K., and Sudheer, K. P. (2008). "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models." Computers and Geotechnics, 35(1), 33-46.
    • (2008) Computers and Geotechnics , vol.35 , Issue.1 , pp. 33-46
    • Padmini, D.1    Ilamparuthi, K.2    Sudheer, K.P.3
  • 127
    • 0032786618 scopus 로고    scopus 로고
    • Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)
    • Penumadu, D., and Zhao, R. (1999). "Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)." Computers and Geotechnics, 24(3), 207-230.
    • (1999) Computers and Geotechnics , vol.24 , Issue.3 , pp. 207-230
    • Penumadu, D.1    Zhao, R.2
  • 128
    • 1842687873 scopus 로고    scopus 로고
    • Interpretation of a model footing response through an adaptive neural fuzzy inference system
    • Provenzano, P., Ferlisi, S., and Musso, A. (2004). "Interpretation of a model footing response through an adaptive neural fuzzy inference system." Computers and Geotechnics, 31(3), 251-266.
    • (2004) Computers and Geotechnics , vol.31 , Issue.3 , pp. 251-266
    • Provenzano, P.1    Ferlisi, S.2    Musso, A.3
  • 129
    • 0035035711 scopus 로고    scopus 로고
    • A neural network model for the uplift capacity of suction cassions
    • Rahman, M. S., Wang, J., Deng, W., and Carter, J. P. (2001). "A neural network model for the uplift capacity of suction cassions." Computers and Geotechnics, 28(4), 269-287.
    • (2001) Computers and Geotechnics , vol.28 , Issue.4 , pp. 269-287
    • Rahman, M.S.1    Wang, J.2    Deng, W.3    Carter, J.P.4
  • 131
    • 0034174354 scopus 로고    scopus 로고
    • Neural networks for agrichemical vulnerability assessment of rural private wells
    • Ray, C., and Klindworth, K. K. (2000). "Neural networks for agrichemical vulnerability assessment of rural private wells." Journal of Hydrologic Engineering, 5(2), 162-171.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 162-171
    • Ray, C.1    Klindworth, K.K.2
  • 132
    • 70649110356 scopus 로고    scopus 로고
    • A new genetic programming model for predicting settlement of shallow foundations
    • Rezania, M., and Javadi, A. (2007). "A new genetic programming model for predicting settlement of shallow foundations." Canadian Geotechnical Journal, 44(12), 1462-1472.
    • (2007) Canadian Geotechnical Journal , vol.44 , Issue.12 , pp. 1462-1472
    • Rezania, M.1    Javadi, A.2
  • 136
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers, L. L., and Dowla, F. U. (1994). "Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling." Water Resources Research, 30(2), 457-481.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 139
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • D. E. Rumelhart and J. L. McClelland, eds., MIT Press, Cambridge
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). "Learning internal representation by error propagation." Parallel Distributed Processing, D. E. Rumelhart and J. L. McClelland, eds., MIT Press, Cambridge.
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 140
    • 84988828223 scopus 로고
    • Neural networks: A new tool for predicting thrift failures
    • Salchenberger, L. M., Cinar, E. M., and Lash, N. A. (1992). "Neural networks: A new tool for predicting thrift failures." Decision Science, 23, 899-916.
    • (1992) Decision Science , vol.23 , pp. 899-916
    • Salchenberger, L.M.1    Cinar, E.M.2    Lash, N.A.3
  • 141
    • 41549100153 scopus 로고    scopus 로고
    • Prediction of friction capacity of driven piles in clay using the support vector machine
    • Samui, P. (2008). "Prediction of friction capacity of driven piles in clay using the support vector machine." Canadian Geotechnical Journal, 45(2), 288-296.
    • (2008) Canadian Geotechnical Journal , vol.45 , Issue.2 , pp. 288-296
    • Samui, P.1
  • 143
    • 69949167521 scopus 로고    scopus 로고
    • Modeling axial capacity of pile foundations by intelligent computing
    • Dundee (Scotland), in press
    • Shahin, M. A. (2008). "Modeling axial capacity of pile foundations by intelligent computing." Proceedings of the BGA International Conference on Foundations, Dundee (Scotland), in press.
    • (2008) Proceedings of the BGA International Conference on Foundations
    • Shahin, M.A.1
  • 144
    • 33846957663 scopus 로고    scopus 로고
    • Modeling the mechanical behavior of railway ballast using artificial neural networks
    • Shahin, M. A., and Indraratna, B. (2006). "Modeling the mechanical behavior of railway ballast using artificial neural networks." Canadian Geotechnical Journal, 43(1), 1144-1152.
    • (2006) Canadian Geotechnical Journal , vol.43 , Issue.1 , pp. 1144-1152
    • Shahin, M.A.1    Indraratna, B.2
  • 145
    • 84869756118 scopus 로고    scopus 로고
    • Probabilistic assessment of the uncertainty associated with the pullout capacity of marquee ground anchors
    • Auckland, In Press
    • Shahin, M. A., and Jaksa, M. B. (2004). "Probabilistic assessment of the uncertainty associated with the pullout capacity of marquee ground anchors." Proceedings of the 9th Australia New Zealand Conference on Geomechanics, Auckland, In Press.
    • (2004) Proceedings of the 9th Australia New Zealand Conference on Geomechanics
    • Shahin, M.A.1    Jaksa, M.B.2
  • 146
    • 84869826824 scopus 로고    scopus 로고
    • Modeling the pullout capacity of marquee ground anchors using neurofuzzy technique
    • MODSIM 2005, Melbourne, Australia
    • Shahin, M. A., and Jaksa, M. B. (2005a). "Modeling the pullout capacity of marquee ground anchors using neurofuzzy technique." Proceedings of the International Journal of Modeling and Simulation, MODSIM 2005, Melbourne, Australia, 66-72.
    • (2005) Proceedings of the International Journal of Modeling and Simulation , pp. 66-72
    • Shahin, M.A.1    Jaksa, M.B.2
  • 147
    • 17444421871 scopus 로고    scopus 로고
    • Neural network prediction of pullout capacity of marquee ground anchors
    • Shahin, M. A., and Jaksa, M. B. (2005b). "Neural network prediction of pullout capacity of marquee ground anchors." Computers and Geotechnics, 32(3), 153-163.
    • (2005) Computers and Geotechnics , vol.32 , Issue.3 , pp. 153-163
    • Shahin, M.A.1    Jaksa, M.B.2
  • 148
    • 33746930800 scopus 로고    scopus 로고
    • Pullout capacity of small ground anchors by direct cone penetration test methods and neural methods
    • Shahin, M. A., and Jaksa, M. B. (2006). "Pullout capacity of small ground anchors by direct cone penetration test methods and neural methods." Canadian Geotechnical Journal, 43(6), 626-637.
    • (2006) Canadian Geotechnical Journal , vol.43 , Issue.6 , pp. 626-637
    • Shahin, M.A.1    Jaksa, M.B.2
  • 149
  • 150
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin, M. A., Jaksa, M. B., and Maier, H. R. (2001). "Artificial neural network applications in geotechnical engineering." Australian Geomechanics, 36(1), 49-62.
    • (2001) Australian Geomechanics , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 151
    • 19944393836 scopus 로고    scopus 로고
    • Artificial neural networkbased settlement prediction formula for shallow foundations on granular soils
    • Shahin, M. A., Jaksa, M. B., and Maier, H. R. (2002a). "Artificial neural networkbased settlement prediction formula for shallow foundations on granular soils." Australian Geomechanics, 37(4), 45-52.
    • (2002) Australian Geomechanics , vol.37 , Issue.4 , pp. 45-52
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 154
    • 19944364218 scopus 로고    scopus 로고
    • Neural network based stochastic design charts for settlement prediction
    • Shahin, M. A., Jaksa, M. B., and Maier, H. R. (2005a). "Neural network based stochastic design charts for settlement prediction." Canadian Geotechnical Journal, 42(1), 110-120.
    • (2005) Canadian Geotechnical Journal , vol.42 , Issue.1 , pp. 110-120
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 155
    • 84869747043 scopus 로고    scopus 로고
    • Stochastic simulation of settlement of shallow foundations based on a deterministic neural network model
    • MODSIM 2005, Melbourne (Australia)
    • Shahin, M. A., Jaksa, M. B., and Maier, H. R. (2005b). "Stochastic simulation of settlement of shallow foundations based on a deterministic neural network model." Proceedings of the International Congress on Modeling and Simulation, MODSIM 2005, Melbourne (Australia), 73-78.
    • (2005) Proceedings of the International Congress on Modeling and Simulation , pp. 73-78
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 157
    • 0036712318 scopus 로고    scopus 로고
    • Closure to: Predicting settlement of shallow foundations on cohesionless soils using neural networks
    • of the International Congress on Modeling and Simulation, MODSIM 2003, Townsville, Queensland, 1886-1891
    • Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2003b). "Closure to: Predicting settlement of shallow foundations on cohesionless soils using neural networks." Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 128(9), 785-793. of the International Congress on Modeling and Simulation, MODSIM 2003, Townsville, Queensland, 1886-1891.
    • (2003) Journal of Geotechnical & Geoenvironmental Engineering, ASCE , vol.128 , Issue.9 , pp. 785-793
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 158
    • 0242468288 scopus 로고    scopus 로고
    • Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models
    • Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2003d). "Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models." Computers and Geotechnics, 30(8), 637-647.
    • (2003) Computers and Geotechnics , vol.30 , Issue.8 , pp. 637-647
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 159
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2004b). "Data division for developing neural networks applied to geotechnical engineering." Journal of Computing in Civil Engineering, ASCE, 18(2), 105-114.
    • (2004) Journal of Computing in Civil Engineering, ASCE , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 160
    • 60549085638 scopus 로고    scopus 로고
    • Investigation into the robustness of artificial neural network models for a case study in civil engineering
    • MODSIM 2005, Melbourne (Australia)
    • Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2005c). "Investigation into the robustness of artificial neural network models for a case study in civil engineering." Proceedings of the International Congress on Modeling and Simulation, MODSIM 2005, Melbourne (Australia), 79-83.
    • (2005) Proceedings of the International Congress on Modeling and Simulation , pp. 79-83
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 161
    • 15544383102 scopus 로고    scopus 로고
    • Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks
    • Shang, J. Q., Ding, W., Rowe, R. K., and Josic, L. (2004). "Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks." Canadian Geotechnical Journal, 41(6), 1054-1067.
    • (2004) Canadian Geotechnical Journal , vol.41 , Issue.6 , pp. 1054-1067
    • Shang, J.Q.1    Ding, W.2    Rowe, R.K.3    Josic, L.4
  • 163
    • 0034171993 scopus 로고    scopus 로고
    • Reducing prediction error by transforming input data for neural networks
    • Shi, J. J. (2000). "Reducing prediction error by transforming input data for neural networks." Journal of Computing in Civil Engineering, ASCE, 14(2), 109-116.
    • (2000) Journal of Computing in Civil Engineering, ASCE , vol.14 , Issue.2 , pp. 109-116
    • Shi, J.J.1
  • 164
    • 0031941646 scopus 로고    scopus 로고
    • Constitutive modeling of geomaterials from non-uniform material tests
    • Sidarta, D. E., and Ghaboussi, J. (1998). "Constitutive modeling of geomaterials from non-uniform material tests." Computers & Geomechanics, 22(10), 53-71.
    • (1998) Computers & Geomechanics , vol.22 , Issue.10 , pp. 53-71
    • Sidarta, D.E.1    Ghaboussi, J.2
  • 165
    • 17844387840 scopus 로고    scopus 로고
    • An intelligent approach to prediction and control ground vibration in mines
    • Singh, T. N., and Singh, V. (2005). "An intelligent approach to prediction and control ground vibration in mines." Geotechnical and Geological Engineering, 23(3), 249-262.
    • (2005) Geotechnical and Geological Engineering , vol.23 , Issue.3 , pp. 249-262
    • Singh, T.N.1    Singh, V.2
  • 166
    • 39849106475 scopus 로고    scopus 로고
    • Artificial neural network prediction models for soil compaction and permeability
    • Sinha, S. K., and Wang, M. C. (2008). "Artificial neural network prediction models for soil compaction and permeability." Geotechnical Engineering Journal, 26(1), 47-64.
    • (2008) Geotechnical Engineering Journal , vol.26 , Issue.1 , pp. 47-64
    • Sinha, S.K.1    Wang, M.C.2
  • 170
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). "Cross-validatory choice and assessment of statistical predictions." Journal of Royal Statistical Society, B 36, 111-147.
    • (1974) Journal of Royal Statistical Society , vol.B 36 , pp. 111-147
    • Stone, M.1
  • 171
    • 23044433719 scopus 로고    scopus 로고
    • knowledge extraction from trained neural network river flow models
    • Sudheer, K. P. (2005). "knowledge extraction from trained neural network river flow models." Journal of Hydologic Engineering, 10(4), 264-269.
    • (2005) Journal of Hydologic Engineering , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 172
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behavior of artificial neural network river flow models
    • Sudheer, K. P., and Jain, A. (2004). "Explaining the internal behavior of artificial neural network river flow models." Hydrological Processes, 18(4), 833-844.
    • (2004) Hydrological Processes , vol.18 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 173
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer, K. P., Nayak, P. C., and Ramasastri, K. S. (2003). "Improving peak flow estimates in artificial neural network river flow models." Hydrological Processes, 17, 677-686.
    • (2003) Hydrological Processes , vol.17 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 174
    • 84908614363 scopus 로고    scopus 로고
    • Neural and neurofuzzy techniques applied to modeling settlement of shallow foundations on granular soils
    • Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2003c). "Neural and neurofuzzy techniques applied to modeling settlement of shallow foundations on granular soils." Proceedings 175.
    • (2003) Proceedings , pp. 175
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 176
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, S. A., and Johnson, P. A. (1999). "Rainfall-runoff modeling using artificial neural networks." Journal of Hydrologic Engineering, 4(3), 232-239.
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 177
    • 0032130999 scopus 로고    scopus 로고
    • Neural network modeling of anisotropic aggregate behavior from repeated load triaxial tests
    • National Research Council, Washington, DC
    • Tutumluer, E., and Seyhan, U. (1998). "Neural network modeling of anisotropic aggregate behavior from repeated load triaxial tests." Transportation Research Record 1615, National Research Council, Washington, DC.
    • (1998) Transportation Research Record 1615
    • Tutumluer, E.1    Seyhan, U.2
  • 180
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H. (1989). "Learning in artificial neural networks: A statistical perspective." Neural Computation, 1, 425-464.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 181
    • 0036090265 scopus 로고    scopus 로고
    • The artificial neural network as a tool for assessing geotechnical properties
    • Yang, Y., and Rosenbaum, M. S. (2002). "The artificial neural network as a tool for assessing geotechnical properties." Geotechnical Engineering Journal, 20(2), 149-168.
    • (2002) Geotechnical Engineering Journal , vol.20 , Issue.2 , pp. 149-168
    • Yang, Y.1    Rosenbaum, M.S.2
  • 182
    • 33845488712 scopus 로고    scopus 로고
    • Tunneling performance prediction using an integrated GIS and neural network
    • Yoo, C., and Kim, J. (2007). "Tunneling performance prediction using an integrated GIS and neural network." Computers and Geotechnics, 34(1), 19-30.
    • (2007) Computers and Geotechnics , vol.34 , Issue.1 , pp. 19-30
    • Yoo, C.1    Kim, J.2
  • 183
    • 33751206829 scopus 로고    scopus 로고
    • Use of artificial neural networks in the prediction of liquefaction resistance of sands
    • Young-Su, K., and Byung-Tak, K. (2006). "Use of artificial neural networks in the prediction of liquefaction resistance of sands." Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1502-1504.
    • (2006) Journal of Geotechnical and Geoenvironmental Engineering , vol.132 , Issue.11 , pp. 1502-1504
    • Young-Su, K.1    Byung-Tak, K.2
  • 184
    • 0026955101 scopus 로고
    • Can back-propagation error surface not have local minima
    • Yu, X.-H. (1992). "Can back-propagation error surface not have local minima." IEEE Transaction on Neural Networks, 3, 1019-1021.
    • (1992) IEEE Transaction on Neural Networks , vol.3 , pp. 1019-1021
    • Yu, X.-H.1
  • 185
    • 42649098946 scopus 로고    scopus 로고
    • Slope reliability analysis using a support vector machine
    • Zhao, H. (2008). "Slope reliability analysis using a support vector machine." Computers and Geotechnics, 35(3), 459-467.
    • (2008) Computers and Geotechnics , vol.35 , Issue.3 , pp. 459-467
    • Zhao, H.1
  • 186
    • 0028098349 scopus 로고
    • Use of neural networks in the analysis and interpretation of site investigation data
    • Zhou, Y., and Wu, X. (1994). "Use of neural networks in the analysis and interpretation of site investigation data." Computer and Geotechnics, 16, 105-122.
    • (1994) Computer and Geotechnics , vol.16 , pp. 105-122
    • Zhou, Y.1    Wu, X.2
  • 187
    • 0032194440 scopus 로고    scopus 로고
    • Modeling of soil behavior with a recurrent neural network
    • Zhu, J. H., Zaman, M. M., and Anderson, S. A. (1998a). "Modeling of soil behavior with a recurrent neural network." Canadian Geotechnical Journal, 35(5), 858-872.
    • (1998) Canadian Geotechnical Journal , vol.35 , Issue.5 , pp. 858-872
    • Zhu, J.H.1    Zaman, M.M.2    Anderson, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.