메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84935022994     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep11297     Document Type: Article
Times cited : (94)

References (53)
  • 1
    • 42349087225 scopus 로고    scopus 로고
    • Superior thermal conductivity of single-layer graphene
    • Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano. Lett. 8, 902-907 (2008).
    • (2008) Nano. Lett , vol.8 , pp. 902-907
    • Balandin, A.A.1
  • 2
    • 47749150628 scopus 로고    scopus 로고
    • Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
    • Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321, 385-388, (2008)
    • (2008) Science , vol.321 , pp. 385-388
    • Lee, C.1    Wei, X.2    Kysar, J.W.3    Hone, J.4
  • 3
    • 7444220645 scopus 로고    scopus 로고
    • Electric Field Effect in Atomically Thin Carbon Films
    • Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004).
    • (2004) Science , vol.306 , pp. 666-669
    • Novoselov, K.S.1
  • 4
    • 35348990381 scopus 로고    scopus 로고
    • Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions
    • Ozyilmaz, B. et al. Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 99, 166804 (2007).
    • (2007) Phys. Rev. Lett , vol.99
    • Ozyilmaz, B.1
  • 5
    • 41749096987 scopus 로고    scopus 로고
    • Graphene Antidot Lattices - Designed Defects and Spin Qubits
    • Pedersen, T. G. et al. Graphene Antidot Lattices - Designed Defects and Spin Qubits. Phys. Rev. Lett. 100, 136804 (2008).
    • (2008) Phys. Rev. Lett , vol.100
    • Pedersen, T.G.1
  • 6
    • 35949006143 scopus 로고
    • Thermoelectric figure of merit of a one-dimensional conductor
    • Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B, 47, 16631-16634 (1993).
    • (1993) Phys. Rev. B , vol.47 , pp. 16631-16634
    • Hicks, L.D.1    Dresselhaus, M.S.2
  • 7
    • 38049148246 scopus 로고    scopus 로고
    • Silicon nanowires as efficient thermoelectric materials
    • Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168-171, (2008).
    • (2008) Nature , vol.451 , pp. 168-171
    • Boukai, A.I.1
  • 8
    • 38049143961 scopus 로고    scopus 로고
    • Enhanced thermoelectric performance of rough silicon nanowires
    • Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163-167, (2008).
    • (2008) Nature , vol.451 , pp. 163-167
    • Hochbaum, A.I.1
  • 9
    • 0842309885 scopus 로고    scopus 로고
    • Thermoelectricity in semiconductor nanostructures
    • 1093164
    • Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 303, 1093164, 777-778, (2004).
    • (2004) Science , vol.303 , pp. 777-778
    • Majumdar, A.1
  • 10
    • 38849174818 scopus 로고    scopus 로고
    • Complex thermoelectric materials
    • Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105-114 (2008).
    • (2008) Nat. Mater , vol.7 , pp. 105-114
    • Snyder, G.J.1    Toberer, E.S.2
  • 11
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
    • (2007) Phys. Rev. Lett , vol.98
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.B.3    Kim, P.4
  • 12
    • 80051521172 scopus 로고    scopus 로고
    • Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons
    • Haskins, J. et al. Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons. Acs. Nano. 5, 3779-3787, (2011).
    • (2011) Acs. Nano , vol.5 , pp. 3779-3787
    • Haskins, J.1
  • 13
    • 67649908643 scopus 로고    scopus 로고
    • A theoretical study on thermoelectric properties of graphene nanoribbons
    • Yijian, O. & Jing, G. A theoretical study on thermoelectric properties of graphene nanoribbons. App. Phys. Lett. 94, 263107, (2009).
    • (2009) App. Phys. Lett , vol.94
    • Yijian, O.1    Jing, G.2
  • 14
    • 80455178897 scopus 로고    scopus 로고
    • Thermoelectric properties of finite graphene antidot lattices
    • Gunst, T., Markussen, T., Jauho, A. P. & Brandbyge, M. Thermoelectric properties of finite graphene antidot lattices. Phys. Rev. B. 84, 155449 (2011).
    • (2011) Phys. Rev. B , vol.84
    • Gunst, T.1    Markussen, T.2    Jauho, A.P.3    Brandbyge, M.4
  • 15
    • 78649748421 scopus 로고    scopus 로고
    • Suppression of thermal conductivity in graphene nanoribbons with rough edges
    • Savin, A. V., Kivshar, Y. S. & Hu, B. Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys. Rev. B. 82, 195422 (2010).
    • (2010) Phys. Rev. B , vol.82
    • Savin, A.V.1    Kivshar, Y.S.2    Hu, B.3
  • 16
    • 77957661314 scopus 로고    scopus 로고
    • Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study
    • Hu, J., Schiffli, S., Vallabhaneni, A., Ruan, X. & Chen, Y. P. Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study. App. Phys. Lett. 97, 133107, (2010).
    • (2010) App. Phys. Lett , vol.97
    • Hu, J.1    Schiffli, S.2    Vallabhaneni, A.3    Ruan, X.4    Chen, Y.P.5
  • 17
    • 70449704483 scopus 로고    scopus 로고
    • Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons
    • Ni, X. X., Liang, G. C., Wang, J. S. & Li, B. W. Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons. App. Phys. Lett. 95, 192114 (2009).
    • (2009) App. Phys. Lett , vol.95
    • Ni, X.X.1    Liang, G.C.2    Wang, J.S.3    Li, B.W.4
  • 18
    • 77956803804 scopus 로고    scopus 로고
    • Isotope Effect on the Thermal Conductivity of Graphene
    • Zhang, H. J., Lee, G., Fonseca, A. F., Borders, T. L. & Cho, K. Isotope Effect on the Thermal Conductivity of Graphene. J. Nanomater. 2010, 5, 537657 (2010).
    • (2010) J. Nanomater , vol.2010 , Issue.5
    • Zhang, H.J.1    Lee, G.2    Fonseca, A.F.3    Borders, T.L.4    Cho, K.5
  • 19
    • 79751473393 scopus 로고    scopus 로고
    • Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility
    • Wei, N., Xu, L. Q., Wang, H. Q. & Zheng, J. C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22, 105705 (2011).
    • (2011) Nanotechnology , vol.22
    • Wei, N.1    Xu, L.Q.2    Wang, H.Q.3    Zheng, J.C.4
  • 20
    • 84864590316 scopus 로고    scopus 로고
    • Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons
    • Yang, K. et al. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B. 86, 1-8, (2012).
    • (2012) Phys. Rev. B , vol.86 , pp. 1-8
    • Yang, K.1
  • 21
    • 84864620995 scopus 로고    scopus 로고
    • Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics
    • Chang, P. H. & Nikolic, B. K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Phys. Rev. B. 86, 041406(R) (2012).
    • (2012) Phys. Rev. B , vol.86
    • Chang, P.H.1    Nikolic, B.K.2
  • 22
    • 84903957080 scopus 로고    scopus 로고
    • Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores
    • Chang, P.-H., Bahramy, M. S., Nagaosa, N. & Nikolić, B. K. Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores. Nano. Lett. 14, 3779-3784, (2014).
    • (2014) Nano. Lett , vol.14 , pp. 3779-3784
    • Chang, P.-H.1    Bahramy, M.S.2    Nagaosa, N.3    Nikolić, B.K.4
  • 23
    • 79961181998 scopus 로고    scopus 로고
    • Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons
    • Mazzamuto, F. et al. Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B. 83, 235426 (2011).
    • (2011) Phys. Rev. B , vol.83
    • Mazzamuto, F.1
  • 24
    • 84867025827 scopus 로고    scopus 로고
    • Enhanced thermoelectric figure of merit in assembled graphene nanoribbons
    • Liang, L. B., Cruz-Silva, E., Girao, E. C. & Meunier, V. Enhanced thermoelectric figure of merit in assembled graphene nanoribbons. Phys. Rev. B. 86, 115438 (2012).
    • (2012) Phys. Rev. B , vol.86
    • Liang, L.B.1    Cruz-Silva, E.2    Girao, E.C.3    Meunier, V.4
  • 25
    • 84860884611 scopus 로고    scopus 로고
    • Thermoelectric performance of disordered and nanostructured graphene ribbons using Green's function method
    • Mazzamuto, F., Saint-Martin, J., Nguyen, V. H., Chassat, C. & Dollfus, P. Thermoelectric performance of disordered and nanostructured graphene ribbons using Green's function method. J. Comput. Electron. 11, 67-77 (2012).
    • (2012) J. Comput. Electron , vol.11 , pp. 67-77
    • Mazzamuto, F.1    Saint-Martin, J.2    Nguyen, V.H.3    Chassat, C.4    Dollfus, P.5
  • 26
    • 77954974060 scopus 로고    scopus 로고
    • Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons
    • Sevincli, H. & Cuniberti, G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B. 81, 113401 (2010).
    • (2010) Phys. Rev. B , vol.81
    • Sevincli, H.1    Cuniberti, G.2
  • 27
    • 70349444987 scopus 로고    scopus 로고
    • Thermopower and Nernst effect in graphene in a magnetic field
    • Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B. 80, 081413 (2009).
    • (2009) Phys. Rev. B , vol.80
    • Checkelsky, J.G.1    Ong, N.P.2
  • 28
    • 79960633177 scopus 로고    scopus 로고
    • Effect of charged impurities on the thermoelectric power of graphene near the Dirac point
    • Wang, D. & Shi, J. Effect of charged impurities on the thermoelectric power of graphene near the Dirac point. Phys. Rev. B. 83, 113403 (2011).
    • (2011) Phys. Rev. B , vol.83
    • Wang, D.1    Shi, J.2
  • 29
    • 67650305370 scopus 로고    scopus 로고
    • Anomalous Thermoelectric Transport of Dirac Particles in Graphene
    • Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous Thermoelectric Transport of Dirac Particles in Graphene. Phys. Rev. Lett. 102, 166808 (2009).
    • (2009) Phys. Rev. Lett , vol.102
    • Wei, P.1    Bao, W.2    Pu, Y.3    Lau, C.N.4    Shi, J.5
  • 30
    • 63449116426 scopus 로고    scopus 로고
    • Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons
    • Jia, X. T. et al. Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science 323, 1701-1705, 1166862 (2009).
    • (2009) Science , vol.323 , pp. 1701-1705
    • Jia, X.T.1
  • 31
  • 32
    • 66449113901 scopus 로고    scopus 로고
    • Rational fabrication of graphene nanoribbons using a nanowire etch mask
    • Bai, J., Duan, X. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 9, 2083-2087, (2009).
    • (2009) Nano Lett , vol.9 , pp. 2083-2087
    • Bai, J.1    Duan, X.2    Huang, Y.3
  • 33
    • 77954904482 scopus 로고    scopus 로고
    • Atomically precise bottom-up fabrication of graphene nanoribbons
    • Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473, (2010).
    • (2010) Nature , vol.466 , pp. 470-473
    • Cai, J.1
  • 35
    • 84871776139 scopus 로고    scopus 로고
    • Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons
    • Huang, H. et al. Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons. Sci. Rep. 2, 983 (2012).
    • (2012) Sci. Rep , vol.2 , pp. 983
    • Huang, H.1
  • 36
    • 79961030425 scopus 로고    scopus 로고
    • Spatially resolving edge states of chiral graphene nanoribbons
    • Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616-620, (2011).
    • (2011) Nat. Phys , vol.7 , pp. 616-620
    • Tao, C.1
  • 37
    • 84894121205 scopus 로고    scopus 로고
    • Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene
    • Wang, W. L. et al. Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene. Nano. Lett. 14, 450-455, (2014).
    • (2014) Nano. Lett , vol.14 , pp. 450-455
    • Wang, W.L.1
  • 38
    • 84919485380 scopus 로고    scopus 로고
    • Direct writing on graphene 'paper' by manipulating electrons as 'invisible ink'
    • Wei, Z., Qiang, Z., Meng-Qiang, Z. & Kuhn, L. T. Direct writing on graphene 'paper' by manipulating electrons as 'invisible ink'. Nanotechnology 24, 1-6, (2013).
    • (2013) Nanotechnology , vol.24 , pp. 1-6
    • Wei, Z.1    Qiang, Z.2    Meng-Qiang, Z.3    Kuhn, L.T.4
  • 39
    • 46749150363 scopus 로고    scopus 로고
    • Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
    • Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech. 3, 397-401, (2008).
    • (2008) Nature Nanotech , vol.3 , pp. 397-401
    • Tapasztó, L.1    Dobrik, G.2    Lambin, P.3    Biró, L.P.4
  • 40
    • 84886674963 scopus 로고    scopus 로고
    • Sub-10 nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices
    • Kalhor, N., Boden, S. A. & Mizuta, H. Sub-10 nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices. Microelectron. Eng. 114, 70-77 (2014).
    • (2014) Microelectron. Eng , vol.114 , pp. 70-77
    • Kalhor, N.1    Boden, S.A.2    Mizuta, H.3
  • 41
    • 84894617377 scopus 로고    scopus 로고
    • Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography
    • Abbas, A. N. et al. Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography. Acs Nano 8, 1538-1546 (2014).
    • (2014) Acs Nano , vol.8 , pp. 1538-1546
    • Abbas, A.N.1
  • 42
    • 0000327805 scopus 로고
    • Mott's formula for the thermopower and the Wiedemann-Franz law
    • Jonson, M. & Mahan, G. D. Mott's formula for the thermopower and the Wiedemann-Franz law. Phys. Rev. B. 21, 4223-4229 (1980).
    • (1980) Phys. Rev. B , vol.21 , pp. 4223-4229
    • Jonson, M.1    Mahan, G.D.2
  • 45
    • 84864609783 scopus 로고    scopus 로고
    • Nanowire silicon as a material for thermoelectric energy conversion
    • Stranz, A., Kaehler, J., Merzsch, S., Waag, A. & Peiner, E. Nanowire silicon as a material for thermoelectric energy conversion. Microsyst. Technol. 18, 857-862, (2012).
    • (2012) Microsyst. Technol , vol.18 , pp. 857-862
    • Stranz, A.1    Kaehler, J.2    Merzsch, S.3    Waag, A.4    Peiner, E.5
  • 47
    • 84879796293 scopus 로고    scopus 로고
    • Improved Thermal Behavior of Multiple Linked Arrays of Silicon Nanowires Integrated into Planar Thermoelectric Microgenerators
    • Davila, D. et al. Improved Thermal Behavior of Multiple Linked Arrays of Silicon Nanowires Integrated into Planar Thermoelectric Microgenerators. J. Electron. Mater. 42, 1918-1925, (2013).
    • (2013) J. Electron. Mater , vol.42 , pp. 1918-1925
    • Davila, D.1
  • 48
    • 79955908832 scopus 로고    scopus 로고
    • Planar Thermoelectric Microgenerators Based on Silicon Nanowires
    • Davila, D. et al. Planar Thermoelectric Microgenerators Based on Silicon Nanowires. J. Electron. Mater. 40, 851-855, (2011).
    • (2011) J. Electron. Mater , vol.40 , pp. 851-855
    • Davila, D.1
  • 49
    • 33244461031 scopus 로고    scopus 로고
    • Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation
    • Esfarjani, K., Zebarjadi, M. & Kawazoe, Y. Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B. 73 (2006).
    • (2006) Phys. Rev. B , vol.73
    • Esfarjani, K.1    Zebarjadi, M.2    Kawazoe, Y.3
  • 50
    • 77957567719 scopus 로고    scopus 로고
    • Semiempirical model for nanoscale device simulations
    • Stokbro, K. et al. Semiempirical model for nanoscale device simulations. Phys. Rev. B. 82, 075420 (2010).
    • (2010) Phys. Rev. B , vol.82
    • Stokbro, K.1
  • 51
    • 0000216412 scopus 로고
    • Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction
    • Landauer, R. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM. J. Res. Dev. 1, 223-231, (1957).
    • (1957) IBM. J. Res. Dev , vol.1 , pp. 223-231
    • Landauer, R.1
  • 52
    • 77957567719 scopus 로고    scopus 로고
    • Semiempirical model for nanoscale device simulations
    • Stokbro, K. et al. Semiempirical model for nanoscale device simulations. Phys. Rev. B. 82, 075420 (2010).
    • (2010) Phys. Rev. B , vol.82
    • Stokbro, K.1
  • 53
    • 41849125958 scopus 로고    scopus 로고
    • Intrinsic and extrinsic performance limits of graphene devices on SiO2
    • Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nano. 3, 206-209, (2008).
    • (2008) Nat. Nano , vol.3 , pp. 206-209
    • Chen, J.-H.1    Jang, C.2    Xiao, S.3    Ishigami, M.4    Fuhrer, M.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.