메뉴 건너뛰기




Volumn 922, Issue , 2012, Pages 1-21

Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair

Author keywords

DNA binding; DNA recombination; DNA repair; DNA replication; DNA replication restart; OB domain; Protein interactions; Replication protein A; Single strand DNA binding protein

Indexed keywords

NUCLEOPROTEIN; OLIGONUCLEOTIDE; SINGLE STRANDED DNA BINDING PROTEIN;

EID: 84934439971     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-62703-32-8_1     Document Type: Article
Times cited : (58)

References (137)
  • 1
    • 77954589779 scopus 로고    scopus 로고
    • Oligonucleotide/ oligosaccharide-binding fold proteins: A growing family of genome guardians
    • Flynn RL, Zou L (2010) Oligonucleotide/ oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 45(4):266-275
    • (2010) Crit Rev Biochem Mol Biol , vol.45 , Issue.4 , pp. 266-275
    • Flynn, R.L.1    Zou, L.2
  • 3
    • 0027479161 scopus 로고
    • OB(oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for nonhomologous sequences
    • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for nonhomologous sequences. EMBO J 12 (3):861-867
    • (1993) EMBO J , vol.12 , Issue.3 , pp. 861-867
    • Murzin, A.G.1
  • 4
    • 0035865799 scopus 로고    scopus 로고
    • Identification and properties of the crenarchaeal singlestranded DNA binding protein from Sulfolobus solfataricus
    • Wadsworth RI, White MF (2001) Identification and properties of the crenarchaeal singlestranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res 29 (4):914-920
    • (2001) Nucleic Acids Res , vol.29 , Issue.4 , pp. 914-920
    • Wadsworth, R.I.1    White, M.F.2
  • 5
    • 0032409981 scopus 로고    scopus 로고
    • Identification and characterization of a singlestranded DNA-binding protein from the archaeon Methanococcus jannaschii
    • Kelly TJ, Simancek P, Brush GS (1998) Identification and characterization of a singlestranded DNA-binding protein from the archaeon Methanococcus jannaschii. Proc Natl Acad Sci U S A 95(25):14634-14639
    • (1998) Proc Natl Acad Sci U S A , vol.95 , Issue.25 , pp. 14634-14639
    • Kelly, T.J.1    Simancek, P.2    Brush, G.S.3
  • 6
    • 0033887437 scopus 로고    scopus 로고
    • Structure of the DNA binding domain of E. coli SSB bound to ssDNA
    • Raghunathan S et al (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7(8):648-652
    • (2000) Nat Struct Biol , vol.7 , Issue.8 , pp. 648-652
    • Raghunathan, S..1
  • 7
    • 2942597631 scopus 로고    scopus 로고
    • Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage
    • Bernstein DA et al (2004) Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci U S A 101(23):8575-8580
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.23 , pp. 8575-8580
    • Bernstein, D.A..1
  • 8
    • 0031030449 scopus 로고    scopus 로고
    • Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA
    • Bochkarev A et al (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385 (6612):176-181
    • (1997) Nature , vol.385 , Issue.6612 , pp. 176-181
    • Bochkarev, A..1
  • 9
    • 0035253862 scopus 로고    scopus 로고
    • Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding
    • Bochkareva E et al (2001) Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J 20 (3):612-618
    • (2001) EMBO J , vol.20 , Issue.3 , pp. 612-618
    • Bochkareva, E..1
  • 10
    • 54349118941 scopus 로고    scopus 로고
    • SSB as an organizer/ mobilizer of genome maintenance complexes
    • Shereda RD et al (2008) SSB as an organizer/ mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43(5):289-318
    • (2008) Crit Rev Biochem Mol Biol , vol.43 , Issue.5 , pp. 289-318
    • Shereda, R.D..1
  • 11
    • 0036772213 scopus 로고    scopus 로고
    • Identification and characterization of single-stranded-DNAbinding proteins from Thermus thermophilus and Thermus aquaticus-new arrangement of binding domains
    • Dabrowski S et al (2002) Identification and characterization of single-stranded-DNAbinding proteins from Thermus thermophilus and Thermus aquaticus-new arrangement of binding domains. Microbiology 148(Pt 10):3307-3315
    • (2002) Microbiology , vol.148 , Issue.PART 10 , pp. 3307-3315
    • Dabrowski, S..1
  • 12
    • 0028246888 scopus 로고
    • Escherichia coli single-stranded DNA-binding protein: Multiple DNA-binding modes and cooperativities
    • Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527-570
    • (1994) Annu Rev Biochem , vol.63 , pp. 527-570
    • Lohman, T.M.1    Ferrari, M.E.2
  • 13
    • 0023916373 scopus 로고
    • Binding mode transitions of Escherichia coli single strand binding protein-singlestranded DNA complexes. Cation, anion, pH, and binding density effects
    • Bujalowski W, Overman LB, Lohman TM (1988) Binding mode transitions of Escherichia coli single strand binding protein-singlestranded DNA complexes. Cation, anion, pH, and binding density effects. J Biol Chem 263 (10):4629-4640
    • (1988) J Biol Chem , vol.263 , Issue.10 , pp. 4629-4640
    • Bujalowski, W.1    Overman, L.B.2    Lohman, T.M.3
  • 14
    • 0023658388 scopus 로고
    • Tryptophan 54 and phenylalanine 60 are involved synergistically in the binding of E. coli SSB protein to single-stranded polynucleotides
    • Casas-Finet JR et al (1987) Tryptophan 54 and phenylalanine 60 are involved synergistically in the binding of E. coli SSB protein to single-stranded polynucleotides. FEBS Lett 220(2):347-352
    • (1987) FEBS Lett , vol.220 , Issue.2 , pp. 347-352
    • Casas-Finet, J.R..1
  • 15
    • 78650691470 scopus 로고    scopus 로고
    • The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks
    • Costes A et al (2010) The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet 6(12):e1001238
    • (2010) PLoS Genet , vol.6 , Issue.12
    • Costes, A..1
  • 16
    • 0030908093 scopus 로고    scopus 로고
    • Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism
    • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61-92
    • (1997) Annu Rev Biochem , vol.66 , pp. 61-92
    • Wold, M.S.1
  • 17
    • 33749134033 scopus 로고    scopus 로고
    • A dynamicmodel for replication protein A (RPA) function inDNA processing pathways
    • Fanning E, Klimovich V, Nager AR (2006) A dynamicmodel for replication protein A (RPA) function inDNA processing pathways. Nucleic Acids Res 34(15):4126-4137
    • (2006) Nucleic Acids Res , vol.34 , Issue.15 , pp. 4126-4137
    • Fanning, E.1    Klimovich, V.2    Nager, A.R.3
  • 18
    • 70350491426 scopus 로고    scopus 로고
    • Multiple human single-stranded DNA binding proteins function in genome maintenance: Structural, biochemical and functional analysis
    • Richard DJ, Bolderson E, Khanna KK (2009) Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 44 (2-3):98-116
    • (2009) Crit Rev Biochem Mol Biol , vol.44 , Issue.2-3 , pp. 98-116
    • Richard, D.J.1    Bolderson, E.2    Khanna, K.K.3
  • 19
    • 0037007223 scopus 로고    scopus 로고
    • Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA
    • Bochkareva E et al (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21(7):1855-1863
    • (2002) EMBO J , vol.21 , Issue.7 , pp. 1855-1863
    • Bochkareva, E..1
  • 20
    • 0034282879 scopus 로고    scopus 로고
    • The role for zinc in replication protein A
    • Bochkareva E, Korolev S, Bochkarev A (2000) The role for zinc in replication protein A. J Biol Chem 275(35):27332-27338
    • (2000) J Biol Chem , vol.275 , Issue.35 , pp. 27332-27338
    • Bochkareva, E.1    Korolev, S.2    Bochkarev, A.3
  • 21
    • 0032870929 scopus 로고    scopus 로고
    • Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox
    • Park JS et al (1999) Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox. J Biol Chem 274 (41):29075-29080
    • (1999) J Biol Chem , vol.274 , Issue.41 , pp. 29075-29080
    • Park, J.S..1
  • 22
    • 0036015495 scopus 로고    scopus 로고
    • A distinctive single-strand DNA-binding protein from the Archaeon Sulfolobus solfataricus
    • Haseltine CA, Kowalczykowski SC (2002) A distinctive single-strand DNA-binding protein from the Archaeon Sulfolobus solfataricus. Mol Microbiol 43(6):1505-1515
    • (2002) Mol Microbiol , vol.43 , Issue.6 , pp. 1505-1515
    • Haseltine, C.A.1    Kowalczykowski, S.C.2
  • 23
    • 0037526104 scopus 로고    scopus 로고
    • Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein
    • Kerr ID et al (2003) Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J 22(11):2561-2570
    • (2003) EMBO J , vol.22 , Issue.11 , pp. 2561-2570
    • Kerr, I.D..1
  • 24
    • 0035854709 scopus 로고    scopus 로고
    • Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination
    • Komori K, Ishino Y (2001) Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination. J Biol Chem 276(28):25654-25660
    • (2001) J Biol Chem , vol.276 , Issue.28 , pp. 25654-25660
    • Komori, K.1    Ishino, Y.2
  • 25
    • 0029052511 scopus 로고
    • Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA
    • Shamoo Y et al (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376(6538):362-366
    • (1995) Nature , vol.376 , Issue.6538 , pp. 362-366
    • Shamoo, Y..1
  • 26
    • 0035859960 scopus 로고    scopus 로고
    • Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7
    • Hollis Tet al (2001) Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. Proc Natl Acad Sci U S A 98(17):9557-9562
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.17 , pp. 9557-9562
    • Hollis, T..1
  • 27
    • 0028018381 scopus 로고
    • Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein-protein interactions
    • Kim YT, Richardson CC (1994) Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein-protein interactions. J Biol Chem 269 (7):5270-5278
    • (1994) J Biol Chem , vol.269 , Issue.7 , pp. 5270-5278
    • Kim, Y.T.1    Richardson, C.C.2
  • 28
    • 0028175289 scopus 로고
    • Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode
    • Ferrari ME, Bujalowski W, Lohman TM (1994) Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. J Mol Biol 236(1):106-123
    • (1994) J Mol Biol , vol.236 , Issue.1 , pp. 106-123
    • Ferrari, M.E.1    Bujalowski, W.2    Lohman, T.M.3
  • 29
    • 0028358069 scopus 로고
    • Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-strandedDNA complexes
    • Lohman TM, Bujalowski W (1994) Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-strandedDNA complexes. Biochemistry 33(20):6167-6176
    • (1994) Biochemistry , vol.33 , Issue.20 , pp. 6167-6176
    • Lohman, T.M.1    Bujalowski, W.2
  • 30
    • 0030888822 scopus 로고    scopus 로고
    • A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single-stranded DNA binding
    • Ferrari ME, Fang J, Lohman TM (1997) A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single-stranded DNA binding. Biophys Chem 64(1-3):235-251
    • (1997) Biophys Chem , vol.64 , Issue.1-3 , pp. 235-251
    • Ferrari, M.E.1    Fang, J.2    Lohman, T.M.3
  • 31
    • 0021216805 scopus 로고
    • Photochemical cross-linking of the Escherichia coli singlestranded DNA-binding protein to oligodeoxynucleotides Identification of phenylalanine 60 as the site of cross-linking
    • Merrill BM et al (1984) Photochemical cross-linking of the Escherichia coli singlestranded DNA-binding protein to oligodeoxynucleotides. Identification of phenylalanine 60 as the site of cross-linking. J Biol Chem 259(17):10850-10856
    • (1984) J Biol Chem , vol.259 , Issue.17 , pp. 10850-10856
    • Merrill, B.M.1
  • 32
    • 44449118949 scopus 로고    scopus 로고
    • Single-stranded DNAbinding protein hSSB1 is critical for genomic stability
    • Richard DJ et al (2008) Single-stranded DNAbinding protein hSSB1 is critical for genomic stability. Nature 453(7195):677-681
    • (2008) Nature , vol.453 , Issue.7195 , pp. 677-681
    • Richard, D.J..1
  • 33
    • 0242507460 scopus 로고    scopus 로고
    • Replication protein A interactions with DNA: Differential binding of the core domains and analysis of the DNA interaction surface
    • Wyka IM et al (2003) Replication protein A interactions with DNA: differential binding of the core domains and analysis of the DNA interaction surface. Biochemistry 42 (44):12909-12918
    • (2003) Biochemistry , vol.42 , Issue.44 , pp. 12909-12918
    • Wyka, I.M..1
  • 34
    • 0142135087 scopus 로고    scopus 로고
    • Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains
    • Arunkumar AI et al (2003) Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J Biol Chem 278 (42):41077-41082
    • (2003) J Biol Chem , vol.278 , Issue.42 , pp. 41077-41082
    • Arunkumar, A.I..1
  • 35
    • 77952990649 scopus 로고    scopus 로고
    • Eukaryotic singlestranded DNA binding proteins: Central factors in genome stability
    • Broderick S et al (2010) Eukaryotic singlestranded DNA binding proteins: central factors in genome stability. Subcell Biochem 50:143-163
    • (2010) Subcell Biochem , vol.50 , pp. 143-163
    • Broderick, S..1
  • 36
    • 77956628136 scopus 로고    scopus 로고
    • Replication protein A: Directing traffic at the intersection of replication and repair
    • OakleyGG, PatrickSM(2010) Replication protein A: directing traffic at the intersection of replication and repair. Front Biosci 15:883-900
    • (2010) Front Biosci , vol.15 , pp. 883-900
    • Oakley, G.G.1    Patrick, S.M.2
  • 37
    • 3042829478 scopus 로고    scopus 로고
    • Human replication protein A (RPA) binds a primer-template junction in the absence of its major ssDNAbinding domains
    • Pestryakov PE et al (2004) Human replication protein A (RPA) binds a primer-template junction in the absence of its major ssDNAbinding domains. Nucleic Acids Res 32 (6):1894-1903
    • (2004) Nucleic Acids Res , vol.32 , Issue.6 , pp. 1894-1903
    • Pestryakov, P.E..1
  • 38
    • 0020580529 scopus 로고
    • Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins
    • Williams KR et al (1983) Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J Biol Chem 258(5):3346-3355
    • (1983) J Biol Chem , vol.258 , Issue.5 , pp. 3346-3355
    • Williams, K.R..1
  • 39
    • 79960804204 scopus 로고    scopus 로고
    • SSB functions as a sliding platform that migrates on DNA via reptation
    • Zhou R et al (2011) SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146(2):222-232
    • (2011) Cell , vol.146 , Issue.2 , pp. 222-232
    • Zhou, R..1
  • 40
    • 0021345031 scopus 로고
    • Characterization of the Escherichia coli SSB-113 mutant singlestranded DNA-binding protein. Cloning of the gene, DNA and protein sequence analysis, high pressure liquid chromatography peptide mapping, and DNA-binding studies
    • Chase JW et al (1984) Characterization of the Escherichia coli SSB-113 mutant singlestranded DNA-binding protein. Cloning of the gene, DNA and protein sequence analysis, high pressure liquid chromatography peptide mapping, and DNA-binding studies. J Biol Chem 259(2):805-814
    • (1984) J Biol Chem , vol.259 , Issue.2 , pp. 805-814
    • Chase, J.W..1
  • 41
    • 0019969851 scopus 로고
    • Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12
    • Wang TC, Smith KC (1982) Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12. J Bacteriol 151(1):186-192
    • (1982) J Bacteriol , vol.151 , Issue.1 , pp. 186-192
    • Wang, T.C.1    Smith, K.C.2
  • 42
    • 0018832897 scopus 로고
    • A temperaturesensitive single-stranded DNA-binding protein from Escherichia coli
    • Meyer RR et al (1980) A temperaturesensitive single-stranded DNA-binding protein from Escherichia coli. J Biol Chem 255(7):2897-2901
    • (1980) J Biol Chem , vol.255 , Issue.7 , pp. 2897-2901
    • Meyer, R.R..1
  • 43
    • 0033534380 scopus 로고    scopus 로고
    • Trading places on DNA-A three-point switch underlies primer handoff from primase to the replicative DNA polymerase
    • Yuzhakov A, Kelman Z, ODonnellM(1999) Trading places on DNA-a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96 (1):153-163
    • (1999) Cell , vol.96 , Issue.1 , pp. 153-163
    • Yuzhakov, A.1    Kelman, Z.2    O'Donnell, M.3
  • 44
    • 0032522760 scopus 로고    scopus 로고
    • Devoted to the lagging strand - The subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly
    • Kelman Z et al (1998) Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J 17(8):2436-2449
    • (1998) EMBO J , vol.17 , Issue.8 , pp. 2436-2449
    • Kelman, Z..1
  • 45
    • 0016273677 scopus 로고
    • Sensitivity to elevated temperatures in exrB strains of Escherichia coli
    • Greenberg J, Donch J (1974) Sensitivity to elevated temperatures in exrB strains of Escherichia coli. Mutat Res 25(3):403-405
    • (1974) Mutat Res , vol.25 , Issue.3 , pp. 403-405
    • Greenberg, J.1    Donch, J.2
  • 46
    • 15244359893 scopus 로고    scopus 로고
    • Independence of replisomes in Escherichia coli chromosomal replication
    • Breier AM (2005) Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci 102 (11):3942-3947
    • (2005) Proc Natl Acad Sci , vol.102 , Issue.11 , pp. 3942-3947
    • Breier, A.M.1
  • 47
    • 1642521025 scopus 로고    scopus 로고
    • Crystal structure of the chi:psi subassembly of the Escherichia coli DNA polymerase clamp-loader complex
    • Gulbis JM et al (2004) Crystal structure of the chi:psi subassembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 271(2):439-449
    • (2004) Eur J Biochem , vol.271 , Issue.2 , pp. 439-449
    • Gulbis, J.M..1
  • 48
    • 0029026635 scopus 로고
    • DNA polymerase III holoenzyme: Structure and function of a chromosomal replicating machine
    • Kelman Z, ODonnell M (1995) DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem 64:171-200
    • (1995) Annu Rev Biochem , vol.64 , pp. 171-200
    • Kelman, Z.1    Odonnell, M.2
  • 49
    • 65549110769 scopus 로고    scopus 로고
    • The mechanism of ATP-dependent primer-template recognition by a clamp loader complex
    • Simonetta KR et al (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137 (4):659-671
    • (2009) Cell , vol.137 , Issue.4 , pp. 659-671
    • Simonetta, K.R..1
  • 50
    • 0035967930 scopus 로고    scopus 로고
    • The DNA polymerase III holoenzyme: An asymmetric dimeric replicative complex with leading and lagging strand polymerases
    • Glover BP, McHenry CS (2001) The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 105 (7):925-934
    • (2001) Cell , vol.105 , Issue.7 , pp. 925-934
    • Glover, B.P.1    McHenry, C.S.2
  • 51
    • 0032483511 scopus 로고    scopus 로고
    • The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSBcoated template
    • Glover BP, McHenry CS (1998) The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSBcoated template. J Biol Chem 273 (36):23476-23484
    • (1998) J Biol Chem , vol.273 , Issue.36 , pp. 23476-23484
    • Glover, B.P.1    McHenry, C.S.2
  • 52
    • 80054954986 scopus 로고    scopus 로고
    • Structure of the SSB-DNA polymerase III interface and its role in DNA replication
    • Marceau AH et al (2011) Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J. 30(20): 4236-4247
    • (2011) EMBO J. , vol.30 , Issue.20 , pp. 4236-4247
    • Marceau, A.H..1
  • 53
    • 0026706674 scopus 로고
    • Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size
    • Wu CA, Zechner EL, Marians KJ (1992) Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. J Biol Chem 267 (6):4030-4044
    • (1992) J Biol Chem , vol.267 , Issue.6 , pp. 4030-4044
    • Wu, C.A.1    Zechner, E.L.2    Marians, K.J.3
  • 54
    • 0018101448 scopus 로고
    • Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains
    • Rowen L, Kornberg A (1978) Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains. J Biol Chem 253 (3):758-764
    • (1978) J Biol Chem , vol.253 , Issue.3 , pp. 758-764
    • Rowen, L.1    Kornberg, A.2
  • 55
    • 13444282478 scopus 로고    scopus 로고
    • PriA helicase and SSB interact physically and functionally
    • Cadman CJ, McGlynn P (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32(21):6378-6387
    • (2004) Nucleic Acids Res , vol.32 , Issue.21 , pp. 6378-6387
    • Cadman, C.J.1    McGlynn, P.2
  • 56
    • 77951690386 scopus 로고    scopus 로고
    • Binding specificity of Escherichia coli single-stranded DNA binding protein for the w subunit of DNA pol III holoenzyme and PriA helicase
    • Kozlov AG et al (2010) Binding specificity of Escherichia coli single-stranded DNA binding protein for the w subunit of DNA pol III holoenzyme and PriA helicase. Biochemistry 49(17):3555-3566
    • (2010) Biochemistry , vol.49 , Issue.17 , pp. 3555-3566
    • Kozlov, A.G..1
  • 57
    • 34948867321 scopus 로고    scopus 로고
    • Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks
    • Lecointe F et al (2007) Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J 26(19):4239-4251
    • (2007) EMBO J , vol.26 , Issue.19 , pp. 4239-4251
    • Lecointe, F..1
  • 58
    • 0019405284 scopus 로고
    • Movement and site selection for priming by the primosome in phage phi X174 DNA replication
    • Arai K, Low RL, Kornberg A (1981) Movement and site selection for priming by the primosome in phage phi X174 DNA replication. Proc Natl Acad Sci USA 78 (2):707-711
    • (1981) Proc Natl Acad Sci USA , vol.78 , Issue.2 , pp. 707-711
    • Arai, K.1    Low, R.L.2    Kornberg, A.3
  • 59
    • 34547121734 scopus 로고    scopus 로고
    • A central role for SSB in Escherichia coli RecQ DNA helicase function
    • Shereda RD, Bernstein DA, Keck JL (2007) A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem 282 (26):19247-19258
    • (2007) J Biol Chem , vol.282 , Issue.26 , pp. 19247-19258
    • Shereda, R.D.1    Bernstein, D.A.2    Keck, J.L.3
  • 60
    • 0345587483 scopus 로고
    • Identification and purification of a single-stranded- DNA-specific exonuclease encoded by the recJ gene of Escherichia coli
    • Lovett ST, Kolodner RD (1989) Identification and purification of a single-stranded- DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A 86(8):2627-2631
    • (1989) Proc Natl Acad Sci U S A , vol.86 , Issue.8 , pp. 2627-2631
    • Lovett, S.T.1    Kolodner, R.D.2
  • 61
    • 0030890705 scopus 로고    scopus 로고
    • RecF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli
    • Courcelle J, Carswell-Crumpton C, Hanawalt PC (1997) recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci U S A 94(8):3714-3719
    • (1997) Proc Natl Acad Sci U S A , vol.94 , Issue.8 , pp. 3714-3719
    • Courcelle, J.1    Carswell-Crumpton, C.2    Hanawalt, P.C.3
  • 62
    • 0032916453 scopus 로고    scopus 로고
    • Recovery of DNA replication in UVirradiated Escherichia coli requires both excision repair and recF protein function
    • Courcelle J, Crowley DJ, Hanawalt PC (1999) Recovery of DNA replication in UVirradiated Escherichia coli requires both excision repair and recF protein function. J Bacteriol 181(3):916-922
    • (1999) J Bacteriol , vol.181 , Issue.3 , pp. 916-922
    • Courcelle, J.1    Crowley, D.J.2    Hanawalt, P.C.3
  • 63
    • 33644862908 scopus 로고    scopus 로고
    • RecJ exonuclease: Substrates, products and interaction with SSB
    • Han ES et al (2006) RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res 34(4):1084-1091
    • (2006) Nucleic Acids Res , vol.34 , Issue.4 , pp. 1084-1091
    • Han, E.S..1
  • 64
    • 34248647207 scopus 로고    scopus 로고
    • SSB protein limits RecOR binding onto singlestranded DNA
    • Hobbs MD, Sakai A, Cox MM (2007) SSB protein limits RecOR binding onto singlestranded DNA. J Biol Chem 282 (15):11058-11067
    • (2007) J Biol Chem , vol.282 , Issue.15 , pp. 11058-11067
    • Hobbs, M.D.1    Sakai, A.2    Cox, M.M.3
  • 65
    • 38349102456 scopus 로고    scopus 로고
    • The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins
    • Inoue J et al (2008) The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins. Nucleic Acids Res 36 (1):94-109
    • (2008) Nucleic Acids Res , vol.36 , Issue.1 , pp. 94-109
    • Inoue, J..1
  • 66
    • 79960790784 scopus 로고    scopus 로고
    • Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein
    • RyzhikovMet al (2011) Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res 39 (14):6305-6314
    • (2011) Nucleic Acids Res , vol.39 , Issue.14 , pp. 6305-6314
    • Ryzhikov, M..1
  • 67
    • 0028330518 scopus 로고
    • Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein
    • Luisi-DeLuca C, Kolodner R (1994) Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J Mol Biol 236(1):124-138
    • (1994) J Mol Biol , vol.236 , Issue.1 , pp. 124-138
    • Luisi-Deluca, C.1    Kolodner, R.2
  • 68
    • 0028932021 scopus 로고
    • Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli
    • Luisi-DeLuca C (1995) Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J Bacteriol 177 (3):566-572
    • (1995) J Bacteriol , vol.177 , Issue.3 , pp. 566-572
    • Luisi-Deluca, C.1
  • 69
    • 79953294532 scopus 로고    scopus 로고
    • Structure and biochemical activities of Escherichia coli MgsA
    • Page AN et al (2011) Structure and biochemical activities of Escherichia coli MgsA. J Biol Chem 286(14):12075-12085
    • (2011) J Biol Chem , vol.286 , Issue.14 , pp. 12075-12085
    • Page, A.N..1
  • 70
    • 0034659679 scopus 로고    scopus 로고
    • Characterisation of the catalytically active form of RecG helicase
    • McGlynn P, Mahdi AA, Lloyd RG (2000) Characterisation of the catalytically active form of RecG helicase. Nucleic Acids Res 28 (12):2324-2332
    • (2000) Nucleic Acids Res , vol.28 , Issue.12 , pp. 2324-2332
    • McGlynn, P.1    Mahdi, A.A.2    Lloyd, R.G.3
  • 71
    • 0036683338 scopus 로고    scopus 로고
    • Genome stability and the processing of damaged replication forks by RecG
    • McGlynn P, Lloyd RG (2002) Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18 (8):413-419
    • (2002) Trends Genet , vol.18 , Issue.8 , pp. 413-419
    • McGlynn, P.1    Lloyd, R.G.2
  • 72
    • 33847306350 scopus 로고    scopus 로고
    • Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA
    • Slocum SL et al (2007) Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol 367(3):647-664
    • (2007) J Mol Biol , vol.367 , Issue.3 , pp. 647-664
    • Slocum, S.L..1
  • 73
    • 48249095036 scopus 로고    scopus 로고
    • Structural basis of Escherichia coli single-stranded DNAbinding protein stimulation of exonuclease i
    • Lu D, Keck JL (2008) Structural basis of Escherichia coli single-stranded DNAbinding protein stimulation of exonuclease I. Proc Natl Acad Sci USA 105(27):9169-9174
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.27 , pp. 9169-9174
    • Lu, D.1    Keck, J.L.2
  • 74
    • 0034074478 scopus 로고    scopus 로고
    • Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease
    • Genschel J, Curth U, Urbanke C (2000) Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381 (3):183-192
    • (2000) Biol Chem , vol.381 , Issue.3 , pp. 183-192
    • Genschel, J.1    Curth, U.2    Urbanke, C.3
  • 75
    • 0028675314 scopus 로고
    • Reconstitution of the DNA base excision-repair pathway
    • Dianov G, Lindahl T (1994) Reconstitution of the DNA base excision-repair pathway. Curr Biol 4(12):1069-1076
    • (1994) Curr Biol , vol.4 , Issue.12 , pp. 1069-1076
    • Dianov, G.1    Lindahl, T.2
  • 76
    • 0033200151 scopus 로고    scopus 로고
    • Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria
    • Purnapatre K et al (1999) Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria. Nucleic Acids Res 27(17):3487-3492
    • (1999) Nucleic Acids Res , vol.27 , Issue.17 , pp. 3487-3492
    • Purnapatre, K..1
  • 77
    • 0025114616 scopus 로고
    • The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system
    • Iwasaki H et al (1990) The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J Bacteriol 172(11):6268-6273
    • (1990) J Bacteriol , vol.172 , Issue.11 , pp. 6268-6273
    • Iwasaki, H..1
  • 78
    • 24044500612 scopus 로고    scopus 로고
    • Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells
    • Pages V, Janel-Bintz R, Fuchs RP (2005) Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells. J Mol Biol 352 (3):501-509
    • (2005) J Mol Biol , vol.352 , Issue.3 , pp. 501-509
    • Pages, V.1    Janel-Bintz, R.2    Fuchs, R.P.3
  • 79
    • 0016609346 scopus 로고
    • The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication
    • Weiner JH, Bertsch LL, Kornberg A (1975) The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication. J Biol Chem 250 (6):1972-1980
    • (1975) J Biol Chem , vol.250 , Issue.6 , pp. 1972-1980
    • Weiner, J.H.1    Bertsch, L.L.2    Kornberg, A.3
  • 80
    • 0016296093 scopus 로고
    • Properties of the Escherichia coli in DNA binding (unwinding) protein: Interaction with DNA polymerase and DNA
    • Molineux IJ, Gefter ML (1974) Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc Natl Acad Sci U S A 71 (10):3858-3862
    • (1974) Proc Natl Acad Sci U S A , vol.71 , Issue.10 , pp. 3858-3862
    • Molineux, I.J.1    Gefter, M.L.2
  • 81
    • 0026725774 scopus 로고
    • Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins
    • Bonner CA et al (1992) Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem 267(16):11431-11438
    • (1992) J Biol Chem , vol.267 , Issue.16 , pp. 11431-11438
    • Bonner, C.A..1
  • 82
    • 0035949599 scopus 로고    scopus 로고
    • A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems
    • Dalrymple BP et al (2001) A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci USA 98 (20):11627-11632
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.20 , pp. 11627-11632
    • Dalrymple, B.P..1
  • 83
    • 43749084397 scopus 로고    scopus 로고
    • Single-stranded DNAbinding protein recruits DNA polymerase v to primer termini on RecA-coated DNA
    • Arad G et al (2008) Single-stranded DNAbinding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 283(13):8274-8282
    • (2008) J Biol Chem , vol.283 , Issue.13 , pp. 8274-8282
    • Arad, G..1
  • 84
    • 0034177771 scopus 로고    scopus 로고
    • Coping with replication train wrecks in Escherichia coli using Pol V, Pol II and RecA proteins
    • Goodman MF (2000) Coping with replication train wrecks in Escherichia coli using Pol V, Pol II and RecA proteins. Trends Biochem Sci 25(4):189-195
    • (2000) Trends Biochem Sci , vol.25 , Issue.4 , pp. 189-195
    • Goodman, M.F.1
  • 86
    • 34547623364 scopus 로고    scopus 로고
    • Molecular interactions of Escherichia coli ExoIX and identification of its associated 3-5 exonuclease activity
    • Hodskinson MR et al (2007) Molecular interactions of Escherichia coli ExoIX and identification of its associated 3-5 exonuclease activity. Nucleic Acids Res 35 (12):4094-4102
    • (2007) Nucleic Acids Res , vol.35 , Issue.12 , pp. 4094-4102
    • Hodskinson, M.R..1
  • 87
    • 0030031215 scopus 로고    scopus 로고
    • E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition
    • Glucksmann-Kuis MA et al (1996) E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell 84(1):147-154
    • (1996) Cell , vol.84 , Issue.1 , pp. 147-154
    • Glucksmann-Kuis, M.A.1
  • 88
    • 0041923779 scopus 로고    scopus 로고
    • Escherichia coli single-stranded DNAbinding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase
    • Davydova EK, Rothman-Denes LB (2003) Escherichia coli single-stranded DNAbinding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci U S A 100(16):9250-9255
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.16 , pp. 9250-9255
    • Davydova, E.K.1    Rothman-Denes, L.B.2
  • 89
    • 0025019702 scopus 로고
    • Binding and unwinding-how T antigen engages the SV40 origin of DNA replication
    • Borowiec JA et al (1990) Binding and unwinding-how T antigen engages the SV40 origin of DNA replication. Cell 60 (2):181-184
    • (1990) Cell , vol.60 , Issue.2 , pp. 181-184
    • Borowiec, J.A..1
  • 90
    • 0025187864 scopus 로고
    • The in vitro replication of DNA containing the SV40 origin
    • Hurwitz J et al (1990) The in vitro replication of DNA containing the SV40 origin. J Biol Chem 265(30):18043-18046
    • (1990) J Biol Chem , vol.265 , Issue.30 , pp. 18043-18046
    • Hurwitz, J..1
  • 91
    • 0033936230 scopus 로고    scopus 로고
    • Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts
    • Mimura S et al (2000) Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells 5(6):439-452
    • (2000) Genes Cells , vol.5 , Issue.6 , pp. 439-452
    • Mimura, S..1
  • 93
    • 0035947571 scopus 로고    scopus 로고
    • Replication protein A as a fidelity clamp for DNA polymerase alpha
    • Maga G et al (2001) Replication protein A as a "fidelity clamp" for DNA polymerase alpha. J Biol Chem 276(21):18235-18242
    • (2001) J Biol Chem , vol.276 , Issue.21 , pp. 18235-18242
    • Maga, G..1
  • 94
    • 0020169709 scopus 로고
    • Synthesis by the DNA primase of Drosophila melanogaster of a primer with a unique chain length
    • Conaway RC, Lehman IR (1982) Synthesis by the DNA primase of Drosophila melanogaster of a primer with a unique chain length. Proc Natl Acad Sci U S A 79(15):4585-4588
    • (1982) Proc Natl Acad Sci U S A , vol.79 , Issue.15 , pp. 4585-4588
    • Conaway, R.C.1    Lehman, I.R.2
  • 95
    • 0020120855 scopus 로고
    • A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos
    • Conaway RC, Lehman IR (1982) A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc Natl Acad Sci U S A 79 (8):2523-2527
    • (1982) Proc Natl Acad Sci U S A , vol.79 , Issue.8 , pp. 2523-2527
    • Conaway, R.C.1    Lehman, I.R.2
  • 96
    • 0029967103 scopus 로고    scopus 로고
    • DNA replication machinery: Functional characterization of a complex containing DNA polymerase alpha, DNA polymerase delta, and replication factor C suggests an asymmetric DNA polymerase dimmer
    • Maga G, Hubscher U (1996) DNA replication machinery: functional characterization of a complex containing DNA polymerase alpha, DNA polymerase delta, and replication factor C suggests an asymmetric DNA polymerase dimer. Biochemistry 35(18):5764-5777
    • (1996) Biochemistry , vol.35 , Issue.18 , pp. 5764-5777
    • Maga, G.1    Hubscher, U.2
  • 97
    • 0035954737 scopus 로고    scopus 로고
    • RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
    • Bae SH et al (2001) RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412 (6845):456-461
    • (2001) Nature , vol.412 , Issue.6845 , pp. 456-461
    • Bae, S.H..1
  • 98
    • 0034528196 scopus 로고    scopus 로고
    • Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing
    • Bae SH, Seo YS (2000) Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem 275(48):38022-38031
    • (2000) J Biol Chem , vol.275 , Issue.48 , pp. 38022-38031
    • Bae, S.H.1    Seo, Y.S.2
  • 99
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Paques F Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae Microbiol Mol Biol Rev 63(2) 349-404.
    • (1999) Microbiol Mol Biol Rev , vol.63 , Issue.2 , pp. 349-404
    • Paques, F.1    Haber, J.E.2
  • 100
    • 4444267632 scopus 로고    scopus 로고
    • Multiple pathways process stalled replication forks
    • Michel B et al (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A 101(35):12783-12788
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.35 , pp. 12783-12788
    • Michel, B.1
  • 101
    • 2942532181 scopus 로고    scopus 로고
    • Physical interaction between replication protein A and Rad51 promotes exchange on singlestranded DNA
    • Stauffer ME, Chazin WJ (2004) Physical interaction between replication protein A and Rad51 promotes exchange on singlestranded DNA. J Biol Chem 279 (24):25638-25645
    • (2004) J Biol Chem , vol.279 , Issue.24 , pp. 25638-25645
    • Stauffer, M.E.1    Chazin, W.J.2
  • 102
    • 13444283630 scopus 로고    scopus 로고
    • Interaction network containing conserved and essential protein complexes in Escherichia coli
    • Butland G et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433 (7025):531-537
    • (2005) Nature , vol.433 , Issue.7025 , pp. 531-537
    • Butland, G..1
  • 103
    • 0034721654 scopus 로고    scopus 로고
    • Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA
    • Mer G et al (2000) Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103(3):449-456
    • (2000) Cell , vol.103 , Issue.3 , pp. 449-456
    • Mer, G.1
  • 104
    • 0037427075 scopus 로고    scopus 로고
    • Interaction between BRCA2 and replication protein A is compromised by a cancerpredisposing mutation in BRCA2
    • Wong JM, Ionescu D, Ingles CJ (2003) Interaction between BRCA2 and replication protein A is compromised by a cancerpredisposing mutation in BRCA2. Oncogene 22(1):28-33
    • (2003) Oncogene , vol.22 , Issue.1 , pp. 28-33
    • Wong, J.M.1    Ionescu, D.2    Ingles, C.J.3
  • 105
    • 23844450310 scopus 로고    scopus 로고
    • Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases
    • Doherty KM et al (2005) Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases. J Biol Chem 280 (33):29494-29505
    • (2005) J Biol Chem , vol.280 , Issue.33 , pp. 29494-29505
    • Doherty, K.M..1
  • 106
    • 0141853230 scopus 로고    scopus 로고
    • The N-terminal domain of the large subunit of human replication protein A binds to Werner syndrome protein and stimulates helicase activity
    • Shen JC et al (2003) The N-terminal domain of the large subunit of human replication protein A binds to Werner syndrome protein and stimulates helicase activity. Mech Ageing Dev 124(8-9):921-930
    • (2003) Mech Ageing Dev , vol.124 , Issue.8-9 , pp. 921-930
    • Shen, J.C..1
  • 107
    • 0034231844 scopus 로고    scopus 로고
    • Werners syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest
    • Constantinou A et al (2000) Werners syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1(1):80-84
    • (2000) EMBO Rep , vol.1 , Issue.1 , pp. 80-84
    • Constantinou, A..1
  • 108
    • 41649103456 scopus 로고    scopus 로고
    • Wrestling off RAD51: A novel role for RecQ helicases
    • Wu L (2008) Wrestling off RAD51: a novel role for RecQ helicases. Bioessays 30 (4):291-295
    • (2008) Bioessays , vol.30 , Issue.4 , pp. 291-295
    • Wu, L.1
  • 109
    • 36849029846 scopus 로고    scopus 로고
    • Novel pro- and antirecombination activities of the Blooms syndrome helicase
    • Bugreev DV et al (2007) Novel pro- and antirecombination activities of the Blooms syndrome helicase. Genes Dev 21(23):3085-3094
    • (2007) Genes Dev , vol.21 , Issue.23 , pp. 3085-3094
    • Bugreev, D.V..1
  • 110
    • 55149115113 scopus 로고    scopus 로고
    • Fanconi anemia proteins stabilize replication forks
    • Wang LC et al (2008) Fanconi anemia proteins stabilize replication forks. DNA Repair (Amst) 7(12):1973-1981
    • (2008) DNA Repair (Amst) , vol.7 , Issue.12 , pp. 1973-1981
    • Wang, L.C..1
  • 111
    • 4143141093 scopus 로고    scopus 로고
    • BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks
    • Pichierri P, Franchitto A, Rosselli F (2004) BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J 23(15):3154-3163
    • (2004) EMBO J , vol.23 , Issue.15 , pp. 3154-3163
    • Pichierri, P.1    Franchitto, A.2    Rosselli, F.3
  • 112
    • 34948855936 scopus 로고    scopus 로고
    • FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein
    • Gupta R et al (2007) FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 110(7):2390-2398
    • (2007) Blood , vol.110 , Issue.7 , pp. 2390-2398
    • Gupta, R..1
  • 113
    • 0037415391 scopus 로고    scopus 로고
    • Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates
    • Kunkel TA, Pavlov YI, Bebenek K (2003) Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amst) 2(2):135-149
    • (2003) DNA Repair (Amst) , vol.2 , Issue.2 , pp. 135-149
    • Kunkel, T.A.1    Pavlov, Y.I.2    Bebenek, K.3
  • 114
    • 13944256948 scopus 로고    scopus 로고
    • Ubiquitination of PCNA and the polymerase switch in human cells
    • Kannouche PL, Lehmann AR (2004) Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 3(8):1011-1013
    • (2004) Cell Cycle , vol.3 , Issue.8 , pp. 1011-1013
    • Kannouche, P.L.1    Lehmann, A.R.2
  • 115
    • 2442417331 scopus 로고    scopus 로고
    • Interaction of human DNA polymerase eta with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage
    • Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14 (4):491-500
    • (2004) Mol Cell , vol.14 , Issue.4 , pp. 491-500
    • Kannouche, P.L.1    Wing, J.2    Lehmann, A.R.3
  • 116
    • 40649097306 scopus 로고    scopus 로고
    • Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a
    • Davies AA et al (2008) Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol Cell 29(5):625-636
    • (2008) Mol Cell , vol.29 , Issue.5 , pp. 625-636
    • Davies, A.A..1
  • 117
    • 33846689350 scopus 로고    scopus 로고
    • Expanding the repertoire of DNA polymerase substrates: Template-instructed incorporation of nonnucleoside triphosphate analogues by DNA polymerases beta and lambda
    • Crespan E et al (2007) Expanding the repertoire of DNA polymerase substrates: template-instructed incorporation of nonnucleoside triphosphate analogues by DNA polymerases beta and lambda. Nucleic Acids Res 35(1):45-57
    • (2007) Nucleic Acids Res , vol.35 , Issue.1 , pp. 45-57
    • Crespan, E..1
  • 118
    • 52649094324 scopus 로고    scopus 로고
    • Interaction between DNA Polymerase lambda and RPA during translesion synthesis
    • Krasikova YS et al (2008) Interaction between DNA Polymerase lambda and RPA during translesion synthesis. Biochemistry (Mosc) 73(9):1042-1046
    • (2008) Biochemistry (Mosc) , vol.73 , Issue.9 , pp. 1042-1046
    • Krasikova, Y.S.1
  • 119
    • 0029974576 scopus 로고    scopus 로고
    • Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a preassembled repairosome
    • Guzder SN et al (1996) Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a preassembled repairosome. J Biol Chem 271 (15):8903-8910
    • (1996) J Biol Chem , vol.271 , Issue.15 , pp. 8903-8910
    • Guzder, S.N..1
  • 120
    • 0026670370 scopus 로고
    • A role for the human single-stranded DNA binding protein HSSB/ RPA in an early stage of nucleotide excision repair
    • Coverley D et al (1992) A role for the human single-stranded DNA binding protein HSSB/ RPA in an early stage of nucleotide excision repair. Nucleic Acids Res 20(15):3873-3880
    • (1992) Nucleic Acids Res , vol.20 , Issue.15 , pp. 3873-3880
    • Coverley, D..1
  • 121
    • 0026085542 scopus 로고
    • Requirement for the replication protein SSB in human DNA excision repair
    • Coverley D et al (1991) Requirement for the replication protein SSB in human DNA excision repair. Nature 349(6309):538-541
    • (1991) Nature , vol.349 , Issue.6309 , pp. 538-541
    • Coverley, D.1
  • 122
    • 0030996226 scopus 로고    scopus 로고
    • A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A
    • Nagelhus TA et al (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 272 (10):6561-6566
    • (1997) J Biol Chem , vol.272 , Issue.10 , pp. 6561-6566
    • Nagelhus, T.A.1
  • 123
    • 0028929611 scopus 로고
    • RPA involvement in the damage-recognition and incision steps of nucleotide excision repair
    • He Z et al (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374 (6522):566-569
    • (1995) Nature , vol.374 , Issue.6522 , pp. 566-569
    • He, Z..1
  • 124
    • 17544367892 scopus 로고    scopus 로고
    • Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease
    • Matsunaga T et al (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 271(19):11047-11050
    • (1996) J Biol Chem , vol.271 , Issue.19 , pp. 11047-11050
    • Matsunaga, T.1
  • 125
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai A et al (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124(5): 943-955
    • (2006) Cell , vol.124 , Issue.5 , pp. 943-955
    • Kumagai, A..1
  • 126
    • 0345564858 scopus 로고    scopus 로고
    • Replication protein A-mediated recruitment and activation of Rad17 complexes
    • Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100(24):13827-13832
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.24 , pp. 13827-13832
    • Zou, L.1    Liu, D.2    Elledge, S.J.3
  • 127
    • 33745607897 scopus 로고    scopus 로고
    • Functions of human replication protein A (RPA): From DNA replication to DNA damage and stress responses
    • Zou Y et al (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208(2):267-273
    • (2006) J Cell Physiol , vol.208 , Issue.2 , pp. 267-273
    • Zou, Y..1
  • 128
    • 2342516683 scopus 로고    scopus 로고
    • Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase
    • Richard DJ, Bell SD, White MF (2004) Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res 32 (3):1065-1074
    • (2004) Nucleic Acids Res , vol.32 , Issue.3 , pp. 1065-1074
    • Richard, D.J.1    Bell, S.D.2    White, M.F.3
  • 129
    • 79551482745 scopus 로고    scopus 로고
    • Physical interaction between archaeal DNA repair helicase Hel308 and replication protein A (RPA)
    • Woodman IL, Brammer K, Bolt EL (2011) Physical interaction between archaeal DNA repair helicase Hel308 and replication protein A (RPA).DNA Repair (Amst) 10(3):306-313
    • (2011) DNA Repair (Amst) , vol.10 , Issue.3 , pp. 306-313
    • Woodman, I.L.1    Brammer, K.2    Bolt, E.L.3
  • 130
    • 33645466839 scopus 로고    scopus 로고
    • Bacterial singlestranded DNA-binding proteins are phosphorylated on tyrosine
    • Mijakovic I et al (2006) Bacterial singlestranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34 (5):1588-1596
    • (2006) Nucleic Acids Res , vol.34 , Issue.5 , pp. 1588-1596
    • Mijakovic, I..1
  • 131
    • 0026403428 scopus 로고
    • Phosphorylation of replication protein A: A role for cdc2 kinase in G1/S regulation
    • Dutta A et al (1991) Phosphorylation of replication protein A: a role for cdc2 kinase in G1/S regulation. Cold Spring Harb Symp Quant Biol 56:315-324
    • (1991) Cold Spring Harb Symp Quant Biol , vol.56 , pp. 315-324
    • Dutta, A.1
  • 132
    • 0026539144 scopus 로고
    • Cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication
    • Dutta A, Stillman B (1992) cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11(6):2189-2199
    • (1992) EMBO J , vol.11 , Issue.6 , pp. 2189-2199
    • Dutta, A.1    Stillman, B.2
  • 133
    • 0025365192 scopus 로고
    • Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells
    • Din S et al (1990) Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev 4 (6):968-977
    • (1990) Genes Dev , vol.4 , Issue.6 , pp. 968-977
    • Din, S..1
  • 134
    • 1142298583 scopus 로고    scopus 로고
    • Differential expression of two paralogous genes of Bacillus subtilis encoding single-stranded DNA binding protein
    • Lindner C et al (2004) Differential expression of two paralogous genes of Bacillus subtilis encoding single-stranded DNA binding protein. J Bacteriol 186(4):1097-1105
    • (2004) J Bacteriol , vol.186 , Issue.4 , pp. 1097-1105
    • Lindner, C..1
  • 135
    • 77953326057 scopus 로고    scopus 로고
    • The structure of DdrB from deinococcus: A new fold for single-stranded DNA binding proteins
    • Sugiman-Marangos S, Junop MS (2010) The structure of DdrB from deinococcus: a new fold for single-stranded DNA binding proteins. Nucleic Acids Res 38 (10):3432-3440
    • (2010) Nucleic Acids Res , vol.38 , Issue.10 , pp. 3432-3440
    • Sugiman-Marangos, S.1    Junop, M.S.2
  • 136
    • 69249097816 scopus 로고    scopus 로고
    • DdrB protein, an alternative deinococcus radiodurans SSB induced by ionizing radiation
    • Norais CA et al (2009) DdrB protein, an alternative deinococcus radiodurans SSB induced by ionizing radiation J Biol Chem 284(32):21402-21411
    • (2009) J Biol Chem , vol.284 , Issue.32 , pp. 21402-21411
    • Norais, C.A..1
  • 137
    • 78149459202 scopus 로고    scopus 로고
    • Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein
    • Oliveira MT, Kaguni LS (2010) Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein. PLoS One 5(10) e15379
    • (2010) PLoS One , vol.5 , Issue.10
    • Oliveira, M.T.1    Kaguni, L.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.