메뉴 건너뛰기




Volumn 234, Issue , 2015, Pages 45-58

Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases

Author keywords

[No Author keywords available]

Indexed keywords

ALDEHYDE DEHYDROGENASE; AMINO ACID; GLUTAMIC ACID;

EID: 84933525893     PISSN: 00092797     EISSN: 18727786     Source Type: Journal    
DOI: 10.1016/j.cbi.2015.01.019     Document Type: Article
Times cited : (11)

References (57)
  • 1
    • 0028316268 scopus 로고
    • Arguments against a close relationship between non-phosphorylating and phosphorylating glyceraldehyde-3-phosphate dehydrogenases
    • S. Michels, S. Scagliarini, F. Della Seta, C. Carles, M. Riva, P. Trost, and G. Branlant Arguments against a close relationship between non-phosphorylating and phosphorylating glyceraldehyde-3-phosphate dehydrogenases FEBS Lett. 339 1994 97 100
    • (1994) FEBS Lett. , vol.339 , pp. 97-100
    • Michels, S.1    Scagliarini, S.2    Della Seta, F.3    Carles, C.4    Riva, M.5    Trost, P.6    Branlant, G.7
  • 2
    • 72049132909 scopus 로고    scopus 로고
    • Kinetic and structural features of betaine aldehyde dehydrogenases: Mechanistic and regulatory implications
    • R.A. Muñoz-Clares, A.G. Díaz-Sánchez, L. González-Segura, and C. Montiel Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications Arch. Biochem. Biophys. 493 2010 71 81
    • (2010) Arch. Biochem. Biophys. , vol.493 , pp. 71-81
    • Muñoz-Clares, R.A.1    Díaz-Sánchez, A.G.2    González-Segura, L.3    Montiel, C.4
  • 3
    • 0033613108 scopus 로고    scopus 로고
    • Evidence for the chemical activation of essential Cys-302 upon cofactor binding to nonphosphorylating glyceraldehyde 3-posphate dehydrogenase from Streptococcus mutans
    • S. Marchal, and G. Branlant Evidence for the chemical activation of essential Cys-302 upon cofactor binding to nonphosphorylating glyceraldehyde 3-posphate dehydrogenase from Streptococcus mutans Biochemistry 38 1999 12950 12958
    • (1999) Biochemistry , vol.38 , pp. 12950-12958
    • Marchal, S.1    Branlant, G.2
  • 4
    • 0034724171 scopus 로고    scopus 로고
    • Role of glutamate-268 in the catalytic mechanism of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans
    • S. Marchal, S. Rahuel-Clermont, and G. Branlant Role of glutamate-268 in the catalytic mechanism of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans Biochemistry 39 2000 3327 3335
    • (2000) Biochemistry , vol.39 , pp. 3327-3335
    • Marchal, S.1    Rahuel-Clermont, S.2    Branlant, G.3
  • 5
    • 33644750108 scopus 로고    scopus 로고
    • The first crystal structure of a thioacylenzyme intermediate in the ALDH family: New coenzyme conformation and relevance to catalysis
    • K. D'Ambrosio, A. Pailot, F. Talfournier, C. Didierjean, E. Benedetti, A. Aubry, G. Branlant, and C. Corbier The first crystal structure of a thioacylenzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis Biochemistry 45 2006 2978 2986
    • (2006) Biochemistry , vol.45 , pp. 2978-2986
    • D'Ambrosio, K.1    Pailot, A.2    Talfournier, F.3    Didierjean, C.4    Benedetti, E.5    Aubry, A.6    Branlant, G.7    Corbier, C.8
  • 7
    • 79957572973 scopus 로고    scopus 로고
    • Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction
    • R.A. Muñoz-Clares, L. González-Segura, and A.G. Díaz-Sánchez Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction Chem. Biol. Interact. 191 2011 137 146
    • (2011) Chem. Biol. Interact. , vol.191 , pp. 137-146
    • Muñoz-Clares, R.A.1    González-Segura, L.2    Díaz-Sánchez, A.G.3
  • 8
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • P. Emsley, and K. Cowtan Coot: model-building tools for molecular graphics Acta 658 Crystallogr. D 60 2004 2126 2132
    • (2004) Acta 658 Crystallogr. D , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 15
    • 84977780596 scopus 로고    scopus 로고
    • ProfileGrids solve the large alignment visualization problem: Influenza hemeagglutinin example
    • A.I. Roca, A.C. Abajian, and D.J. Vigerust ProfileGrids solve the large alignment visualization problem: influenza hemeagglutinin example F1000 Res. 2 2013 2
    • (2013) F1000 Res. , vol.2 , pp. 2
    • Roca, A.I.1    Abajian, A.C.2    Vigerust, D.J.3
  • 16
    • 0032859206 scopus 로고    scopus 로고
    • Eukaryotic aldehyde dehydrogenase (ALDH) genes: Human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping
    • V. Vasiliou, A. Bairoch, K.F. Tipton, and D.W. Nebert Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping Pharmacogenet. Genom. 9 1999 421 434
    • (1999) Pharmacogenet. Genom. , vol.9 , pp. 421-434
    • Vasiliou, V.1    Bairoch, A.2    Tipton, K.F.3    Nebert, D.W.4
  • 17
    • 76249084919 scopus 로고    scopus 로고
    • The aldehyde dehydrogenase gene superfamily resource center
    • W. Black, and V. Vasiliou The aldehyde dehydrogenase gene superfamily resource center Hum. Genomics. 4 2009 136 142
    • (2009) Hum. Genomics. , vol.4 , pp. 136-142
    • Black, W.1    Vasiliou, V.2
  • 18
    • 29144457577 scopus 로고    scopus 로고
    • Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids
    • X. Peng, K. Shindo, K. Kanoh, Y. Inomata, S.-K. Choi, and N. Misawa Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids Appl. Microbiol. Biotechnol. 69 2005 141 150
    • (2005) Appl. Microbiol. Biotechnol. , vol.69 , pp. 141-150
    • Peng, X.1    Shindo, K.2    Kanoh, K.3    Inomata, Y.4    Choi, S.-K.5    Misawa, N.6
  • 20
    • 0030763455 scopus 로고    scopus 로고
    • Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: Characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine
    • J. Boch, G. Nau-Wagner, S. Kneip, and E. Bremer Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine Arch. Microbiol. 168 1997 282 289
    • (1997) Arch. Microbiol. , vol.168 , pp. 282-289
    • Boch, J.1    Nau-Wagner, G.2    Kneip, S.3    Bremer, E.4
  • 21
    • 0032936309 scopus 로고    scopus 로고
    • The choline-converting pathway in Staphylococcus xylosus C2A: Genetic and physiological characterization
    • R. Rosenstein, D. Futter-Bryniok, and F. Gotz The choline-converting pathway in Staphylococcus xylosus C2A: genetic and physiological characterization J. Bacteriol. 181 1999 2273 2278
    • (1999) J. Bacteriol. , vol.181 , pp. 2273-2278
    • Rosenstein, R.1    Futter-Bryniok, D.2    Gotz, F.3
  • 22
    • 22544444661 scopus 로고    scopus 로고
    • Identification of Escherichia coli K12 YdcW protein as a gamma-aminobutyraldehyde dehydrogenase
    • N.N. Samsonova, S.V. Smirnov, A.E. Novikova, and L.R. Ptitsyn Identification of Escherichia coli K12 YdcW protein as a gamma-aminobutyraldehyde dehydrogenase FEBS Lett. 579 2005 4107 4112
    • (2005) FEBS Lett. , vol.579 , pp. 4107-4112
    • Samsonova, N.N.1    Smirnov, S.V.2    Novikova, A.E.3    Ptitsyn, L.R.4
  • 24
    • 0023988783 scopus 로고
    • The fourth arginine catabolic pathway of Pseudomonas aeruginosa
    • A. Jann, H. Matsumoto, and D. Haas The fourth arginine catabolic pathway of Pseudomonas aeruginosa J. Gen. Microbiol. 134 1988 1043 1053
    • (1988) J. Gen. Microbiol. , vol.134 , pp. 1043-1053
    • Jann, A.1    Matsumoto, H.2    Haas, D.3
  • 25
    • 34249793996 scopus 로고    scopus 로고
    • Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa
    • Z. Yang, and C.D. Lu Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa J. Bacteriol. 189 2007 3945 3953
    • (2007) J. Bacteriol. , vol.189 , pp. 3945-3953
    • Yang, Z.1    Lu, C.D.2
  • 26
    • 14244267811 scopus 로고    scopus 로고
    • A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12
    • S. Kurihara, S. Oda, K. Kato, H.G. Kim, T. Koyanagi, H. Kumagai, and H. Suzuki A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12 J. Biol. Chem. 280 2005 4602 4608
    • (2005) J. Biol. Chem. , vol.280 , pp. 4602-4608
    • Kurihara, S.1    Oda, S.2    Kato, K.3    Kim, H.G.4    Koyanagi, T.5    Kumagai, H.6    Suzuki, H.7
  • 32
    • 84876707023 scopus 로고    scopus 로고
    • Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase
    • Z. Yuan, B. Yin, D. Wei, and Y.R. Yuan Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase J. Struct. Biol. 182 2013 125 135
    • (2013) J. Struct. Biol. , vol.182 , pp. 125-135
    • Yuan, Z.1    Yin, B.2    Wei, D.3    Yuan, Y.R.4
  • 33
    • 0030894636 scopus 로고    scopus 로고
    • Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. Oxydans strain
    • Y. Saito, Y. Ishii, H. Hayashi, Y. Imao, T. Akashi, K. Yoshikawa, Y. Noguchi, S. Soeda, M. Yoshida, M. Niwa, J. Hosoda, and K. Shimomura Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain Appl. Environ. Microbiol. 63 1997 454 460
    • (1997) Appl. Environ. Microbiol. , vol.63 , pp. 454-460
    • Saito, Y.1    Ishii, Y.2    Hayashi, H.3    Imao, Y.4    Akashi, T.5    Yoshikawa, K.6    Noguchi, Y.7    Soeda, S.8    Yoshida, M.9    Niwa, M.10    Hosoda, J.11    Shimomura, K.12
  • 35
    • 14544281667 scopus 로고    scopus 로고
    • Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1
    • S. Kühner, L. Wöhlbrand, I. Fritz, W. Wruck, C. Hultschig, P. Hufnagel, M. Kube, R. Reinhardt, and R. Rabus Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1 J. Bacteriol. 187 2005 1493 1503
    • (2005) J. Bacteriol. , vol.187 , pp. 1493-1503
    • Kühner, S.1    Wöhlbrand, L.2    Fritz, I.3    Wruck, W.4    Hultschig, C.5    Hufnagel, P.6    Kube, M.7    Reinhardt, R.8    Rabus, R.9
  • 36
    • 0037131233 scopus 로고    scopus 로고
    • Characterization of the amino acids involved in substrate specificity of nonphosphorylating glyceraldehydes-3-phosphate dehydrogenase from Streptococcus mutans
    • S. Marchal, and G. Branlant Characterization of the amino acids involved in substrate specificity of nonphosphorylating glyceraldehydes-3-phosphate dehydrogenase from Streptococcus mutans J. Biol. Chem. 42 2002 39235 39242
    • (2002) J. Biol. Chem. , vol.42 , pp. 39235-39242
    • Marchal, S.1    Branlant, G.2
  • 37
    • 0015499994 scopus 로고
    • Horse liver aldehyde dehydrogenase. II. Kinetics and mechanistic implications of the dehydrogenase and esterase activity
    • R.I. Feldman, and H. Weiner Horse liver aldehyde dehydrogenase. II. Kinetics and mechanistic implications of the dehydrogenase and esterase activity J. Biol. Chem. 247 1972 267 272
    • (1972) J. Biol. Chem. , vol.247 , pp. 267-272
    • Feldman, R.I.1    Weiner, H.2
  • 38
    • 0019641519 scopus 로고
    • Kinetic mechanism of the human cytoplasmic aldehyde dehydrogenase E1
    • R.C. Vallari, and R. Pietruszko Kinetic mechanism of the human cytoplasmic aldehyde dehydrogenase E1 Arch. Biochem. Biophys. 212 1981 9 19
    • (1981) Arch. Biochem. Biophys. , vol.212 , pp. 9-19
    • Vallari, R.C.1    Pietruszko, R.2
  • 39
    • 0019577315 scopus 로고
    • Kinetic studies with rat-brain succinic-semialdehyde dehydrogenase
    • A.J. Rivett, and K.F. Tipton Kinetic studies with rat-brain succinic-semialdehyde dehydrogenase Eur. J. Biochem. 117 1981 187 193
    • (1981) Eur. J. Biochem. , vol.117 , pp. 187-193
    • Rivett, A.J.1    Tipton, K.F.2
  • 40
    • 0027428742 scopus 로고
    • Betaine-aldehyde dehydrogenase from leaves of Amaranthus hypochondriacus L. Exhibits an iso ordered Bi Bi steady state mechanism
    • (Erratum: J. Biol. Chem. 269 (1994) 4692)
    • E.M. Valenzuela-Soto, and R.A. Muñoz-Clares Betaine-aldehyde dehydrogenase from leaves of Amaranthus hypochondriacus L. exhibits an iso ordered Bi Bi steady state mechanism J. Biol. Chem. 268 1993 23818 23823 (Erratum: J. Biol. Chem. 269 (1994) 4692)
    • (1993) J. Biol. Chem. , vol.268 , pp. 23818-23823
    • Valenzuela-Soto, E.M.1    Muñoz-Clares, R.A.2
  • 42
    • 0031570328 scopus 로고    scopus 로고
    • Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion
    • C.G. Steinmetz, P. Xie, H. Weiner, and T.D. Hurley Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion Structure 5 1997 701 711
    • (1997) Structure , vol.5 , pp. 701-711
    • Steinmetz, C.G.1    Xie, P.2    Weiner, H.3    Hurley, T.D.4
  • 43
    • 0037866381 scopus 로고    scopus 로고
    • Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase
    • S.J. Perez-Miller, and T.D. Hurley Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase Biochemistry 42 2003 7100 7109
    • (2003) Biochemistry , vol.42 , pp. 7100-7109
    • Perez-Miller, S.J.1    Hurley, T.D.2
  • 44
    • 33947424367 scopus 로고    scopus 로고
    • Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: Implications for the catalytic mechanism of aldehyde dehydrogenases
    • Y. Tsybovsky, H. Donato, N.I. Krupenko, C. Davies, and S.A. Krupenko Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: implications for the catalytic mechanism of aldehyde dehydrogenases Biochemistry 46 2007 2917 2929
    • (2007) Biochemistry , vol.46 , pp. 2917-2929
    • Tsybovsky, Y.1    Donato, H.2    Krupenko, N.I.3    Davies, C.4    Krupenko, S.A.5
  • 45
    • 0034733390 scopus 로고    scopus 로고
    • Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans
    • D. Cobessi, F. Tête-Favier, S. Marchal, G. Branlant, and A. Aubry Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans J. Mol. Biol. 300 2000 141 152
    • (2000) J. Mol. Biol. , vol.300 , pp. 141-152
    • Cobessi, D.1    Tête-Favier, F.2    Marchal, S.3    Branlant, G.4    Aubry, A.5
  • 46
    • 0028922730 scopus 로고
    • Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis
    • X. Wang, and H. Weiner Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis Biochemistry 34 1995 237 243
    • (1995) Biochemistry , vol.34 , pp. 237-243
    • Wang, X.1    Weiner, H.2
  • 47
    • 0031006710 scopus 로고    scopus 로고
    • Critical glutamic residues affecting the mechanism and nucleotide specificity of Vibrio harveyi aldehyde dehydrogenase
    • M. Vedadi, and E. Meighen Critical glutamic residues affecting the mechanism and nucleotide specificity of Vibrio harveyi aldehyde dehydrogenase Eur. J. Biochem. 246 1997 698 704
    • (1997) Eur. J. Biochem. , vol.246 , pp. 698-704
    • Vedadi, M.1    Meighen, E.2
  • 48
    • 0032872782 scopus 로고    scopus 로고
    • Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases
    • C.J. Mann, and H. Weiner Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases Protein Sci. 8 1999 1922 1929
    • (1999) Protein Sci. , vol.8 , pp. 1922-1929
    • Mann, C.J.1    Weiner, H.2
  • 49
    • 0345073750 scopus 로고    scopus 로고
    • Chemical modifications to study mutations that affect the ability of the general base (E268) to function in human liver mitochondrial aldehyde dehydrogenase
    • B. Wei, D.C. Mays, J.J. Lipsky, and H. Weiner Chemical modifications to study mutations that affect the ability of the general base (E268) to function in human liver mitochondrial aldehyde dehydrogenase Chem. Biol. Interact. 143-144 2003 85 91
    • (2003) Chem. Biol. Interact. , vol.143-144 , pp. 85-91
    • Wei, B.1    Mays, D.C.2    Lipsky, J.J.3    Weiner, H.4
  • 50
    • 0019878597 scopus 로고
    • Nicotinamide adenine dinucleotide activation of the esterase reaction of horse liver aldehyde dehydrogenase
    • K. Takahashi, and H. Weiner Nicotinamide adenine dinucleotide activation of the esterase reaction of horse liver aldehyde dehydrogenase Biochemistry 20 1981 2720 2726
    • (1981) Biochemistry , vol.20 , pp. 2720-2726
    • Takahashi, K.1    Weiner, H.2
  • 52
    • 10344242388 scopus 로고    scopus 로고
    • Molecular recognition of aldehydes by aldehyde dehydrogenase and mechanism of nucleophile activation
    • T. Wymore, J. Hempel, S.S. Cho, A.D. MacKerell, H.B. Nicholas Jr, and D.W. Deerfield Molecular recognition of aldehydes by aldehyde dehydrogenase and mechanism of nucleophile activation Proteins 57 2004 758 771
    • (2004) Proteins , vol.57 , pp. 758-771
    • Wymore, T.1    Hempel, J.2    Cho, S.S.3    Mackerell, A.D.4    Nicholas, Jr.H.B.5    Deerfield, D.W.6
  • 53
    • 4344591748 scopus 로고    scopus 로고
    • Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax
    • E. Lorentzen, R. Hensel, T. Knura, H. Ahmed, and E. Pohl Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax J. Mol. Biol. 341 2004 815 828
    • (2004) J. Mol. Biol. , vol.341 , pp. 815-828
    • Lorentzen, E.1    Hensel, R.2    Knura, T.3    Ahmed, H.4    Pohl, E.5
  • 54
    • 9744226460 scopus 로고    scopus 로고
    • A twisted base? the role of arginine in enzyme-catalyzed proton abstractions
    • Y.V.G. Schlippe, and L. Hedstrom A twisted base? The role of arginine in enzyme-catalyzed proton abstractions Arch. Biochem. Biophys. 433 2005 266 278
    • (2005) Arch. Biochem. Biophys. , vol.433 , pp. 266-278
    • Schlippe, Y.V.G.1    Hedstrom, L.2
  • 55
    • 0019879368 scopus 로고
    • Effects of pH on horse liver aldehyde dehydrogenase: Alterations in metal ion activation, number of functioning active sites, and hydrolysis of the acyl intermediate
    • K. Takahashi, H. Weiner, and D.L. Filmer Effects of pH on horse liver aldehyde dehydrogenase: alterations in metal ion activation, number of functioning active sites, and hydrolysis of the acyl intermediate Biochemistry 20 1981 6225 6230
    • (1981) Biochemistry , vol.20 , pp. 6225-6230
    • Takahashi, K.1    Weiner, H.2    Filmer, D.L.3
  • 56
    • 0023050188 scopus 로고
    • Studies on the mechanism of sheep liver cytosolic aldehyde dehydrogenase. The effect of pH on the aldehyde binding reactions and a re-examination of the problem of the site of proton release in the mechanism
    • F.M. Dickinson Studies on the mechanism of sheep liver cytosolic aldehyde dehydrogenase. The effect of pH on the aldehyde binding reactions and a re-examination of the problem of the site of proton release in the mechanism Biochem. J. 238 1986 75 82
    • (1986) Biochem. J. , vol.238 , pp. 75-82
    • Dickinson, F.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.