메뉴 건너뛰기




Volumn 24, Issue 10, 2015, Pages 2955-2970

Online Kernel Slow Feature Analysis for Temporal Video Segmentation and Tracking

Author keywords

Change detection; Online kernel learning; Slow feature analysis; Temporal segmentation; Tracking

Indexed keywords

COMPUTER VISION; IMAGE SEGMENTATION; SIGNAL DETECTION; SOCIAL NETWORKING (ONLINE); SURFACE DISCHARGES;

EID: 84933040965     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2015.2428052     Document Type: Article
Times cited : (26)

References (47)
  • 1
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Apr.
    • L. Wiskott and T. J. Sejnowski, "Slow feature analysis: Unsupervised learning of invariances", Neural Comput., vol. 14, no. 4, pp. 715-770, Apr. 2002.
    • (2002) Neural Comput. , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 2
    • 27244444336 scopus 로고    scopus 로고
    • Slow feature analysis yields a rich repertoire of complex cell properties
    • Jul.
    • P. Berkes and L. Wiskott, "Slow feature analysis yields a rich repertoire of complex cell properties", J. Vis., vol. 5, no. 6, pp. 579-602, Jul. 2005.
    • (2005) J. Vis. , vol.5 , Issue.6 , pp. 579-602
    • Berkes, P.1    Wiskott, L.2
  • 4
    • 84867687400 scopus 로고    scopus 로고
    • Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams
    • Nov.
    • V. R. Kompella, M. Luciw, and J. Schmidhuber, "Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams", Neural Comput., vol. 24, no. 11, pp. 2994-3024, Nov. 2012.
    • (2012) Neural Comput. , vol.24 , Issue.11 , pp. 2994-3024
    • Kompella, V.R.1    Luciw, M.2    Schmidhuber, J.3
  • 7
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • P. Földiák, "Learning invariance from transformation sequences", Neural Comput., vol. 3, no. 2, pp. 194-200, 1991.
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 194-200
    • Földiák, P.1
  • 8
    • 0034247885 scopus 로고    scopus 로고
    • Sequential Karhunen-Loeve basis extraction and its application to images
    • Aug.
    • A. Levy and M. Lindenbaum, "Sequential Karhunen-Loeve basis extraction and its application to images", IEEE Trans. Image Process., vol. 9, no. 8, pp. 1371-1374, Aug. 2000.
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.8 , pp. 1371-1374
    • Levy, A.1    Lindenbaum, M.2
  • 9
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental learning for robust visual tracking", Int. J. Comput. Vis., vol. 77, nos. 1-3, pp. 125-141, 2008.
    • (2008) Int. J. Comput. Vis. , vol.77 , Issue.1-3 , pp. 125-141
    • Ross, D.A.1    Lim, J.2    Lin, R.-S.3    Yang, M.-H.4
  • 10
    • 34249337437 scopus 로고    scopus 로고
    • Incremental kernel principal component analysis
    • Jun.
    • T.-J. Chin and D. Suter, "Incremental kernel principal component analysis", IEEE Trans. Image Process., vol. 16, no. 6, pp. 1662-1674, Jun. 2007.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.6 , pp. 1662-1674
    • Chin, T.-J.1    Suter, D.2
  • 11
    • 79959527478 scopus 로고    scopus 로고
    • Robust object tracking with online multiple instance learning
    • Aug.
    • B. Babenko, M.-H. Yang, and S. Belongie, "Robust object tracking with online multiple instance learning", IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1619-1632, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1619-1632
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 12
    • 84875886116 scopus 로고    scopus 로고
    • Efficient online subspace learning with an indefinite kernel for visual tracking and recognition
    • Oct.
    • S. Liwicki, S. Zafeiriou, G. Tzimiropoulos, and M. Pantic, "Efficient online subspace learning with an indefinite kernel for visual tracking and recognition", IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1624-1636, Oct. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.10 , pp. 1624-1636
    • Liwicki, S.1    Zafeiriou, S.2    Tzimiropoulos, G.3    Pantic, M.4
  • 13
    • 0041471247 scopus 로고    scopus 로고
    • Candid covariance-free incremental principal component analysis
    • Aug.
    • J. Weng, Y. Zhang, and W.-S. Hwang, "Candid covariance-free incremental principal component analysis", IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8, pp. 1034-1040, Aug. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.8 , pp. 1034-1040
    • Weng, J.1    Zhang, Y.2    Hwang, W.-S.3
  • 14
    • 0035362693 scopus 로고    scopus 로고
    • Sequential extraction of minor components
    • Jun.
    • T. Chen, S.-I. Amari, and N. Murata, "Sequential extraction of minor components", Neural Process. Lett., vol. 13, no. 3, pp. 195-201, Jun. 2001.
    • (2001) Neural Process. Lett. , vol.13 , Issue.3 , pp. 195-201
    • Chen, T.1    Amari, S.-I.2    Murata, N.3
  • 16
    • 25844445939 scopus 로고    scopus 로고
    • Iterative kernel principal component analysis for image modeling
    • Sep.
    • K. I. Kim, M. O. Franz, and B. Schölkopf, "Iterative kernel principal component analysis for image modeling", IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 9, pp. 1351-1366, Sep. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.9 , pp. 1351-1366
    • Kim, K.I.1    Franz, M.O.2    Schölkopf, B.3
  • 18
    • 56049114663 scopus 로고    scopus 로고
    • Kernel least mean square algorithm with constrained growth
    • Mar.
    • P. P. Pokharel, W. Liu, and J. C. Principe, "Kernel least mean square algorithm with constrained growth", Signal Process., vol. 89, no. 3, pp. 257-265, Mar. 2009.
    • (2009) Signal Process. , vol.89 , Issue.3 , pp. 257-265
    • Pokharel, P.P.1    Liu, W.2    Principe, J.C.3
  • 19
    • 72149098116 scopus 로고    scopus 로고
    • An information theoretic approach of designing sparse kernel adaptive filters
    • Dec.
    • W. Liu, I. Park, and J. C. Príncipe, "An information theoretic approach of designing sparse kernel adaptive filters", IEEE Trans. Neural Netw., vol. 20, no. 12, pp. 1950-1961, Dec. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.12 , pp. 1950-1961
    • Liu, W.1    Park, I.2    Príncipe, J.C.3
  • 21
    • 84901008770 scopus 로고    scopus 로고
    • Online dictionary learning for kernel LMS
    • Jun.
    • W. Gao, J. Chen, C. Richard, and J. Huang, "Online dictionary learning for kernel LMS", IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2765-2777, Jun. 2014.
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.11 , pp. 2765-2777
    • Gao, W.1    Chen, J.2    Richard, C.3    Huang, J.4
  • 23
    • 61549112727 scopus 로고    scopus 로고
    • Online prediction of time series data with kernels
    • Mar.
    • C. Richard, J. C. M. Bermudez, and P. Honeine, "Online prediction of time series data with kernels", IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1058-1067, Mar. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.3 , pp. 1058-1067
    • Richard, C.1    Bermudez, J.C.M.2    Honeine, P.3
  • 26
    • 59349120959 scopus 로고    scopus 로고
    • Unsupervised view and rate invariant clustering of video sequences
    • Mar.
    • P. Turaga, A. Veeraraghavan, and R. Chellappa, "Unsupervised view and rate invariant clustering of video sequences", Comput. Vis. Image Understand., vol. 113, no. 3, pp. 353-371, Mar. 2009.
    • (2009) Comput. Vis. Image Understand. , vol.113 , Issue.3 , pp. 353-371
    • Turaga, P.1    Veeraraghavan, A.2    Chellappa, R.3
  • 29
    • 84875884940 scopus 로고    scopus 로고
    • Incremental slow feature analysis with indefinite kernel for online temporal video segmentation
    • S. Liwicki, S. Zafeiriou, and M. Pantic, "Incremental slow feature analysis with indefinite kernel for online temporal video segmentation", in Proc. 11th Asian Conf. Comput. Vis. (ACCV), 2012, pp. 162-176.
    • (2012) Proc. 11th Asian Conf. Comput. Vis. (ACCV) , pp. 162-176
    • Liwicki, S.1    Zafeiriou, S.2    Pantic, M.3
  • 32
    • 0029753901 scopus 로고    scopus 로고
    • Linear estimation in Krein spaces. I. Theory
    • Jan.
    • B. Hassibi, A. H. Sayed, and T. Kailath, "Linear estimation in Krein spaces. I. Theory", IEEE Trans. Autom. Control, vol. 41, no. 1, pp. 18-33, Jan. 1996.
    • (1996) IEEE Trans. Autom. Control , vol.41 , Issue.1 , pp. 18-33
    • Hassibi, B.1    Sayed, A.H.2    Kailath, T.3
  • 33
    • 65549157171 scopus 로고    scopus 로고
    • Kernel discriminant analysis for positive definite and indefinite kernels
    • Jun.
    • E. Pękalska and B. Haasdonk, "Kernel discriminant analysis for positive definite and indefinite kernels", IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 6, pp. 1017-1032, Jun. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.6 , pp. 1017-1032
    • Pękalska, E.1    Haasdonk, B.2
  • 36
    • 0032594954 scopus 로고    scopus 로고
    • Input space versus feature space in kernel-based methods
    • Sep.
    • B. Schölkopf et al., "Input space versus feature space in kernel-based methods", IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000-1017, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 1000-1017
    • Schölkopf, B.1
  • 39
    • 84904204067 scopus 로고    scopus 로고
    • Symbiotic tracker ensemble toward a unified tracking framework
    • Jul.
    • Y. Gao, R. Ji, L. Zhang, and A. Hauptmann, "Symbiotic tracker ensemble toward a unified tracking framework", IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 7, pp. 1122-1131, Jul. 2014.
    • (2014) IEEE Trans. Circuits Syst. Video Technol. , vol.24 , Issue.7 , pp. 1122-1131
    • Gao, Y.1    Ji, R.2    Zhang, L.3    Hauptmann, A.4
  • 40
    • 84897441292 scopus 로고    scopus 로고
    • Event-driven video adaptation: A powerful tool for industrial video supervision
    • Mar.
    • A. Doulamis, "Event-driven video adaptation: A powerful tool for industrial video supervision", Multimedia Tools Appl., vol. 69, no. 2, pp. 339-358, Mar. 2014.
    • (2014) Multimedia Tools Appl. , vol.69 , Issue.2 , pp. 339-358
    • Doulamis, A.1
  • 42
    • 0031188771 scopus 로고    scopus 로고
    • Probabilistic visual learning for object representation
    • Jul.
    • B. Moghaddam and A. Pentland, "Probabilistic visual learning for object representation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 696-710, Jul. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.7 , pp. 696-710
    • Moghaddam, B.1    Pentland, A.2
  • 43
    • 30644462162 scopus 로고    scopus 로고
    • A formula for angles between subspaces of inner product spaces
    • H. Gunawan, O. Neswan, and W. Setya-Budhi, "A formula for angles between subspaces of inner product spaces", Contrib. Algebra Geometry, vol. 46, no. 2, pp. 311-320, 2005.
    • (2005) Contrib. Algebra Geometry , vol.46 , Issue.2 , pp. 311-320
    • Gunawan, H.1    Neswan, O.2    Setya-Budhi, W.3
  • 44
    • 78650799805 scopus 로고    scopus 로고
    • Induced disgust, happiness and surprise: An addition to the MMI facial expression database
    • M. Valstar and M. Pantic, "Induced disgust, happiness and surprise: An addition to the MMI facial expression database", in Proc. Int. Conf. Lang. Resour. Eval. (LREC), 2010, pp. 65-70.
    • (2010) Proc. Int. Conf. Lang. Resour. Eval. (LREC) , pp. 65-70
    • Valstar, M.1    Pantic, M.2
  • 45
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel methods
    • Nov.
    • J. T.-Y. Kwok and I. W. Tsang, "The pre-image problem in kernel methods", IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1517-1525, Nov. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.6 , pp. 1517-1525
    • Kwok, J.T.-Y.1    Tsang, I.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.