-
1
-
-
29144453489
-
A unifying viewof sparse approximate Gaussian process regression
-
J. Quinonero-Candela and C. E. Rasmussen, "A unifying viewof sparse approximate Gaussian process regression," J. Mach. Learn. Res., vol.6, pp. 1939-1959, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1939-1959
-
-
Quinonero-Candela, J.1
Rasmussen, C.E.2
-
2
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
-
C. K. I.Williams and M. Seeger, "Using the Nyström method to speed up kernel machines," in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, vol.13, pp. 682-688.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 682-688
-
-
Williams, C.K.I.1
Seeger, M.2
-
3
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations," J. Mach. Learn. Res., vol.2, pp. 242-264, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 242-264
-
-
Fine, S.1
Scheinberg, K.2
-
4
-
-
0000695404
-
Information-based objective functions for active data selection
-
D. MacKay, "Information-based objective functions for active data selection," Neural Comput., vol.4, no.4, pp. 590-604, 1992.
-
(1992)
Neural Comput
, vol.4
, Issue.4
, pp. 590-604
-
-
MacKay, D.1
-
5
-
-
84899000575
-
Sparse greedy Gaussian process regression
-
Cambridge, MA: MIT Press
-
A. J. Smola and P. L. Bartlett, "Sparse greedy Gaussian process regression," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, vol.13, pp. 619-625.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 619-625
-
-
Smola, A.J.1
Bartlett, P.L.2
-
6
-
-
33645588530
-
Fast forward selection to speed up sparse Gaussian process regression
-
M. Seeger and C.Williams, "Fast forward selection to speed up sparse Gaussian process regression," in Proc. Workshop Artif. Intell. Statist., 2003, pp. 205-212.
-
(2003)
Proc. Workshop Artif. Intell. Statist.
, pp. 205-212
-
-
Seeger, M.1
Williams, C.2
-
7
-
-
12144258144
-
Subset based least squares subspace regression in RKHS
-
L. Hoegaerts, J. A. K. Suykens, J. Vandewalle, and B. De Moor, "Subset based least squares subspace regression in RKHS," Neurocomputing, vol.63, pp. 293-323, 2005.
-
(2005)
Neurocomputing
, vol.63
, pp. 293-323
-
-
Hoegaerts, L.1
Suykens, J.A.K.2
Vandewalle, J.3
De Moor, B.4
-
8
-
-
0003238552
-
Incremental and decremental support vector machine learning
-
Cambridge, MA: MIT Press
-
G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000, pp. 409-415.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
9
-
-
84898992868
-
Incremental Gaussian processes
-
Cambridge, MA: MIT Press
-
J. Quinonero-Candela and O. Winther, "Incremental Gaussian processes," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2003, vol.15, pp. 1001-1008.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 1001-1008
-
-
Quinonero-Candela, J.1
Winther, O.2
-
10
-
-
84899003168
-
Online classification on a budget
-
S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
-
K. Crammer, J. Kandola, and Y. Singer, "Online classification on a budget," in Advances in Neural Information Processing Systems, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004, vol.16, pp. 225-232.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 225-232
-
-
Crammer, K.1
Kandola, J.2
Singer, Y.3
-
11
-
-
3543110224
-
Online learning with kernels
-
Aug.
-
J. Kivinen, A. Smola, and R. C. Williamson, "Online learning with kernels," IEEE Trans. Signal Process., vol.52, no.8, pp. 2165-2176, Aug. 2004.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A.2
Williamson, R.C.3
-
12
-
-
39649089144
-
The kernel least mean square algorithm
-
Feb.
-
W. Liu, P. Pokharel, and J. Príncipe, "The kernel least mean square algorithm," IEEE Trans. Signal Process., vol.56, no.2, pp. 543-554, Feb. 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.2
, pp. 543-554
-
-
Liu, W.1
Pokharel, P.2
Príncipe, J.3
-
13
-
-
3543096272
-
The kernel recursive least-squares algorithm
-
Aug.
-
Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least-squares algorithm," IEEE Trans. Signal Process., vol.52, no.8, pp. 2275-2285, Aug. 2004.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2275-2285
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
14
-
-
45749141285
-
The kernel affine projection algorithms
-
[Online]. Available: doi=10.1155/2008/784292
-
W. Liu and J. C. Príncipe, "The kernel affine projection algorithms," EURASIP J. Adv. Signal Process. 2008 [Online]. Available: http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/784292
-
(2008)
EURASIP J. Adv. Signal Process.
-
-
Liu, W.1
Príncipe, J.C.2
-
15
-
-
45749106357
-
Sliding window generalized kernel affine projection algorithm using projection mappings
-
[Online]. Available: doi=10.1155/2008/735351
-
K. Slavakis and S. Theodoridis, "Sliding window generalized kernel affine projection algorithm using projection mappings," EURASIP J. Adv. Signal Process. 2008 [Online]. Available: http://www.hindawi. com/GetArticle.aspx?doi=10.1155/2008/735351
-
(2008)
EURASIP J. Adv. Signal Process.
-
-
Slavakis, K.1
Theodoridis, S.2
-
16
-
-
61549112727
-
Online prediction of time series data with kernels
-
Mar.
-
C. Richard, J. C. M. Bermudez, and P. Honeine, "Online prediction of time series data with kernels," IEEE Trans. Signal Process., vol.57, no.3, pp. 1058-1066, Mar. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.3
, pp. 1058-1066
-
-
Richard, C.1
Bermudez, J.C.M.2
Honeine, P.3
-
17
-
-
70349635279
-
Extended kernel recursive least squares algorithm
-
Oct.
-
W. Liu, I. Park, Y.Wang, and J. C. Príncipe, "Extended kernel recursive least squares algorithm," IEEE Trans. Signal Process., vol.57, no.10, pp. 3801-3814, Oct. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.10
, pp. 3801-3814
-
-
Liu, W.1
Park, I.2
Wang, Y.3
Príncipe, J.C.4
-
18
-
-
0003807773
-
-
4th ed. Englewood Cliffs, NJ: Prentice-Hall
-
S. Haykin, Adaptive Filter Theory, 4th ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.
-
(2002)
Adaptive Filter Theory
-
-
Haykin, S.1
-
19
-
-
0001071040
-
Aresource-allocating network for function interpolation
-
J. Platt, "Aresource-allocating network for function interpolation," Neural Comput., vol.3, no.2, pp. 213-225, 1991.
-
(1991)
Neural Comput
, vol.3
, Issue.2
, pp. 213-225
-
-
Platt, J.1
-
20
-
-
0038891993
-
Sparse online Gaussian processes
-
L. Csato and M. Opper, "Sparse online Gaussian processes," Neural Comput., vol.14, pp. 641-668, 2002.
-
(2002)
Neural Comput
, vol.14
, pp. 641-668
-
-
Csato, L.1
Opper, M.2
-
21
-
-
0019846397
-
Evidence, information, and surprise
-
G. Palm, "Evidence, information, and surprise," Biol. Cybern., vol.42, no.1, pp. 57-68, 1981.
-
(1981)
Biol. Cybern.
, vol.42
, Issue.1
, pp. 57-68
-
-
Palm, G.1
-
22
-
-
0015295196
-
Learning and information theory
-
E. Pfaffelhuber, "Learning and information theory," Int. J. Neurosci., vol.3, no.2, pp. 83-88, 1972.
-
(1972)
Int. J. Neurosci.
, vol.3
, Issue.2
, pp. 83-88
-
-
Pfaffelhuber, E.1
-
23
-
-
33750734547
-
Bayesian surprise attracts human attention
-
Cambridge, MA: MIT Press
-
L. Itti and P. Baldi, "Bayesian surprise attracts human attention," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2006, vol.19, pp. 1-8.
-
(2006)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1-8
-
-
Itti, L.1
Baldi, P.2
-
25
-
-
72149133998
-
Negative log-likelihood and statistical hypothesis testing as the basis of model selection in IDEAs
-
D.Whitley, Ed., Las Vegas, NV
-
P. A. N. Bosman and D. Thierens, "Negative log-likelihood and statistical hypothesis testing as the basis of model selection in IDEAs," in Proc. Genetic Evol. Comput. Conf. (Late Breaking Papers), D.Whitley, Ed., Las Vegas, NV, 2000, pp. 51-58.
-
(2000)
Proc. Genetic Evol. Comput. Conf. (Late Breaking Papers)
, pp. 51-58
-
-
Bosman, P.A.N.1
Thierens, D.2
-
27
-
-
48049096929
-
Active learning for outdoor obstacle detection
-
Aug.
-
C. Dima and M. Hebert, "Active learning for outdoor obstacle detection," in Proc. Sci. Syst. I, Aug. 2005.
-
(2005)
Proc. Sci. Syst. I
-
-
Dima, C.1
Hebert, M.2
-
28
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol.68, pp. 337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
29
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining Knowl. Disc., vol.2, no.2, pp. 121-167, 1998.
-
(1998)
Data Mining Knowl. Disc.
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
31
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
C. Saunders, A. Gammerman, and V. Vovk, "Ridge regression learning algorithm in dual variables," in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 515-521.
-
(1998)
Proc. 15th Int. Conf. Mach. Learn.
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
32
-
-
0037695279
-
-
Singapore: World Scientific
-
J. A. K. Suykens, T. V. Gestel, J. Brabanter, B. D. Moor, and J. Vandewalle, Least Squares Support Vector Machines. Singapore: World Scientific, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Gestel, T.V.2
Brabanter, J.3
Moor, B.D.4
Vandewalle, J.5
-
33
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
Sep.
-
B. Schölkopf, B. Mika, C. J. C. Burges, P. Knirsch, K. Müller, G. Rätsch, and A. Smola, "Input space vs. feature space in kernel-based methods," IEEE Trans. Neural Netw., vol.10, no.5, pp. 1000-1017, Sep. 1999.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, B.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.5
Rätsch, G.6
Smola, A.7
-
34
-
-
84856043672
-
A mathematical theory of communication
-
Jul.
-
C. E. Shannon, "A mathematical theory of communication," in Bell Syst. Tech. J., Jul. 1948, pp. 379-423.
-
(1948)
In Bell Syst. Tech. J.
, pp. 379-423
-
-
Shannon, C.E.1
-
36
-
-
0242705996
-
The mathematics of learning: Dealing with data
-
Nov.
-
T. Poggio and S. Smale, "The mathematics of learning: Dealing with data," Trans. Amer. Math. Soc., vol.50, pp. 537-544, Nov. 2003.
-
(2003)
Trans. Amer. Math. Soc.
, vol.50
, pp. 537-544
-
-
Poggio, T.1
Smale, S.2
-
39
-
-
0031375732
-
Nonlinear prediction of chaotic time series using support vector machines
-
J. Príncipe, L. Giles, N. Morgan, and E. Wilson, Eds.
-
S. Mukherjee, E. Osuna, and F. Girosi, "Nonlinear prediction of chaotic time series using support vector machines," in Proc. IEEE Workshop Neural Netw. Signal Process. VII, J. Príncipe, L. Giles, N. Morgan, and E. Wilson, Eds., 1997, pp. 511-519.
-
(1997)
Proc. IEEE Workshop Neural Netw. Signal Process. VII
, pp. 511-519
-
-
Mukherjee, S.1
Osuna, E.2
Girosi, F.3
-
40
-
-
0000779360
-
Detecting strange attractors in turbulence
-
F. Takens, "Detecting strange attractors in turbulence," Dyn. Syst. Turbulence, pp. 366-381, 1981.
-
(1981)
Dyn. Syst. Turbulence
, pp. 366-381
-
-
Takens, F.1
-
41
-
-
77953870556
-
Trends in atmospheric carbon dioxide-Mauna loa
-
[Online]. Available
-
P. Tans, "Trends in atmospheric carbon dioxide-Mauna loa," NOAA/ ESRL, 2008 [Online]. Available: www.esrl.noaa.gov/gmd/ccgg/trends
-
(2008)
NOAA/ ESRL
-
-
Tans, P.1
|