메뉴 건너뛰기




Volumn 8, Issue , 2007, Pages 1893-1918

Fast iterative kernel principal component analysis

Author keywords

Gain vector adaptation; Kernel hebbian algorithm; Online learning; Step size adaptation; Stochastic meta descent

Indexed keywords

ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; EIGENVALUES AND EIGENFUNCTIONS; HILBERT SPACES; ITERATIVE METHODS; OPTICAL RESOLVING POWER;

EID: 34548170925     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (119)

References (28)
  • 1
    • 0004055894 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge, England
    • Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, England, 2004.
    • (2004) Convex Optimization
    • Boyd, S.1    Vandenberghe, L.2
  • 2
    • 0029373066 scopus 로고
    • An adaptive learning algorithm for principal component analysis
    • Liang-Hwe Chen and Shyang Chang. An adaptive learning algorithm for principal component analysis. IEEE Transaction on Neural Networks, 6(5): 1255-1263, 1995.
    • (1995) IEEE Transaction on Neural Networks , vol.6 , Issue.5 , pp. 1255-1263
    • Chen, L.1    Chang, S.2
  • 3
    • 0003160484 scopus 로고
    • Towards faster stochastic gradient search
    • John E. Moody, Stephen J. Hanson, and Richard Lippmann, editors, Morgan Kaufmann Publishers
    • Christian Darken and John E. Moody. Towards faster stochastic gradient search. In John E. Moody, Stephen J. Hanson, and Richard Lippmann, editors, Advances in Neural Information Processing Systems, volume 4, pages 1009-1016. Morgan Kaufmann Publishers, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 1009-1016
    • Darken, C.1    Moody, J.E.2
  • 4
    • 0035363672 scopus 로고    scopus 로고
    • Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):643-660, 2001. ISSN 0162-8828. doi:http://doi. ieeecomputersociety.org/10.1109/34.927464.
    • Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):643-660, 2001. ISSN 0162-8828. doi:http://doi. ieeecomputersociety.org/10.1109/34.927464.
  • 5
    • 0003319841 scopus 로고    scopus 로고
    • Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
    • SIAM, Philadelphia
    • Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.
    • (2000) Frontiers in Applied Mathematics
    • Griewank, A.1
  • 6
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Bernhard Schölkopf, Chris J. C. Burges, and Alex J. Smola, editors, Cambridge, MA, MIT Press
    • Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Schölkopf, Chris J. C. Burges, and Alex J. Smola, editors, Advances in Kernel Methods-Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 7
    • 0028752570 scopus 로고
    • Optimization criteria and nonlinear PCA neural networks
    • Juha Karhunen. Optimization criteria and nonlinear PCA neural networks. In IEEE World Congress on Computational Intelligence, volume 2, pages 1241-1246, 1994.
    • (1994) IEEE World Congress on Computational Intelligence , vol.2 , pp. 1241-1246
    • Karhunen, J.1
  • 8
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • Juha Karhunen and Jyrki Joutsensalo. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 7(1):113-127, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 12
    • 31844440880 scopus 로고    scopus 로고
    • Comparing clusterings: An axiomatic view
    • New York, NY, USA, ACM Press
    • Marina Meila. Comparing clusterings: An axiomatic view. In Proc. 22nd Intl. Conf. Machine Learning (ICML), pages 577-584, New York, NY, USA, 2005. ACM Press.
    • (2005) Proc. 22nd Intl. Conf. Machine Learning (ICML) , pp. 577-584
    • Meila, M.1
  • 13
    • 84898970836 scopus 로고    scopus 로고
    • Kernel PCA and de-noising in feature spaces
    • Michael S. Kearns, Sara A. Solla, and David A. Cohn, editors, MIT Press
    • Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, and Gunnar Rätsch. Kernel PCA and de-noising in feature spaces. In Michael S. Kearns, Sara A. Solla, and David A. Cohn, editors, Advances in Neural Information Processing Systems, volume 11, pages 536-542. MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 536-542
    • Mika, S.1    Schölkopf, B.2    Smola, A.J.3    Müller, K.4    Scholz, M.5    Rätsch, G.6
  • 15
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors
    • Andrew Y Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 16
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • February
    • Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis and Applications, 106(1): 69-84, February 1985.
    • (1985) Journal of Mathematical Analysis and Applications , vol.106 , Issue.1 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 17
    • 0000255539 scopus 로고
    • Fast exact multiplication by the Hessian
    • Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147-160, 1994.
    • (1994) Neural Computation , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.A.1
  • 18
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Bernhard Schölkopf, Chris J. C. Burges, and Alex J. Smola, editors, Cambridge, MA, MIT Press
    • John Piatt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Chris J. C. Burges, and Alex J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Piatt, J.1
  • 20
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward network
    • Terrence D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward network. Neural Networks, 2:459-473, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 22
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.3
  • 23
    • 0036631778 scopus 로고    scopus 로고
    • Fast curvature matrix-vector products for second-order gradient descent
    • Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural Computation, 14(7):1723-1738, 2002.
    • (2002) Neural Computation , vol.14 , Issue.7 , pp. 1723-1738
    • Schraudolph, N.N.1
  • 24
    • 0033338205 scopus 로고    scopus 로고
    • Local gain adaptation in stochastic gradient descent
    • Edinburgh, Scotland, IEE, London
    • Nicol N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf. Artificial Neural Networks, pages 569-574, Edinburgh, Scotland, 1999. IEE, London.
    • (1999) Proc. Intl. Conf. Artificial Neural Networks , pp. 569-574
    • Schraudolph, N.N.1
  • 25
    • 79955898420 scopus 로고    scopus 로고
    • Fast iterative kernel PCA
    • Bernhard Schölkopf, John Platt, and Thomas Hofmann, editors, Cambridge MA, June, MIT Press
    • Nicol N. Schraudolph, Simon Günter, and S. V. N. Vishwanathan. Fast iterative kernel PCA. In Bernhard Schölkopf, John Platt, and Thomas Hofmann, editors, Advances in Neural Information Processing Systems, volume 19, Cambridge MA, June 2007. MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.19
    • Schraudolph, N.N.1    Günter, S.2    Vishwanathan, S.V.N.3
  • 26
    • 34147137116 scopus 로고    scopus 로고
    • Human motion de-noising via greedy kernel principal component analysis filtering
    • Therdsak Tangkuampien and David Suter. Human motion de-noising via greedy kernel principal component analysis filtering. In Proc. Intl. Conf. Pattern Recognition, 2006.
    • (2006) Proc. Intl. Conf. Pattern Recognition
    • Tangkuampien, T.1    Suter, D.2
  • 28
    • 33745784205 scopus 로고    scopus 로고
    • Parallel software for training large scale support vector machines on multiprocessor systems
    • July
    • Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel software for training large scale support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7: 1467-1492, July 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1467-1492
    • Zanni, L.1    Serafini, T.2    Zanghirati, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.