메뉴 건너뛰기




Volumn 24, Issue 11, 2012, Pages 2994-3024

Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84867687400     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00344     Document Type: Article
Times cited : (47)

References (65)
  • 1
    • 0009775381 scopus 로고
    • (Ed.). Piscataway, NJ: IEEE Press
    • Abut, H. (Ed.) (1990). Vector quantization. Piscataway, NJ: IEEE Press.
    • (1990) Vector quantization
    • Abut, H.1
  • 2
    • 0017392285 scopus 로고
    • Neural theory of association and concept-formation
    • Amari, S. (1977). Neural theory of association and concept-formation. Biological Cybernetics, 26(3), 175-185.
    • (1977) Biological Cybernetics , vol.26 , Issue.3 , pp. 175-185
    • Amari, S.1
  • 4
    • 84858720675 scopus 로고    scopus 로고
    • Slow, decorrelated features for pretraining complex cell-like networks
    • In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Red Hook NY: Curran
    • Bergstra, J., & Bengio, Y. (2009). Slow, decorrelated features for pretraining complex cell-like networks. In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 99-107). Red Hook, NY: Curran.
    • (2009) Advances in neural information processing systems , vol.22 , pp. 99-107
    • Bergstra, J.1    Bengio, Y.2
  • 6
    • 0345627997 scopus 로고    scopus 로고
    • A unified algorithm for principal and minor components extraction
    • Chen, T., Amari, S., & Lin, Q. (1998). A unified algorithm for principal and minor components extraction. Neural Networks, 11(3), 385-390.
    • (1998) Neural Networks , vol.11 , Issue.3 , pp. 385-390
    • Chen, T.1    Amari, S.2    Lin, Q.3
  • 7
    • 0035362693 scopus 로고    scopus 로고
    • Sequential extraction of minor components
    • Chen, T., Amari, S., & Murata, N. (2001). Sequential extraction of minor components. Neural Processing Letters, 13(3), 195-201.
    • (2001) Neural Processing Letters , vol.13 , Issue.3 , pp. 195-201
    • Chen, T.1    Amari, S.2    Murata, N.3
  • 8
    • 0028416938 scopus 로고
    • Independent component analysis, A new concept?
    • Comon, P. (1994). Independent component analysis, A new concept? Signal Processing, 36, 287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 11
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • F̈oldíak, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194-200.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 194-200
    • F̈oldíak, P.1
  • 13
    • 34548412214 scopus 로고    scopus 로고
    • Slowness and sparseness lead to place, head-direction, and spatial-view cells
    • Franzius, M., Sprekeler, H., & Wiskott, L. (2007). Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8), e166.
    • (2007) PLoS Computational Biology , vol.3 , Issue.8
    • Franzius, M.1    Sprekeler, H.2    Wiskott, L.3
  • 15
    • 0032397673 scopus 로고    scopus 로고
    • Lanczos' generalized derivative
    • Groetsch, C. W. (1998). Lanczos' generalized derivative. American Mathematical Monthly, 105(4), 320-326.
    • (1998) American Mathematical Monthly , vol.105 , Issue.4 , pp. 320-326
    • Groetsch, C.W.1
  • 16
    • 0018861680 scopus 로고
    • How does a brain build a cognitive code?
    • Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87(1), 1-5.
    • (1980) Psychological Review , vol.87 , Issue.1 , pp. 1-5
    • Grossberg, S.1
  • 17
    • 23844454091 scopus 로고    scopus 로고
    • Microstructure of a spatial map in the entorhinal cortex
    • 3022
    • Hafting, T., Fyhn, M.,Molden, S.,Moser,M., &Moser, E. (2005).Microstructure of a spatial map in the entorhinal cortex. Nature, 7052, 801-806. 3022
    • (2005) Nature , vol.7052 , pp. 801-806
    • Hafting, T.1    Fyhn, M.2    Molden, S.3    Moser, M.4    Moser, E.5
  • 19
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comp., 14(8), 1771-1800.
    • (2002) Neural Comp. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 27
    • 0000382262 scopus 로고
    • Method of stochastic approximation in the determination of the largest eigenvalue of the mathematical expectation of random matrices
    • Krasulina, T. (1970).Method of stochastic approximation in the determination of the largest eigenvalue of the mathematical expectation of random matrices. Automat.Remote Contr, 2, 215-221.
    • (1970) Automat.Remote Contr , vol.2 , pp. 215-221
    • Krasulina, T.1
  • 29
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D., & Seung, H. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 30
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Red Hook, NY: Curran
    • Lee, H., Largman, Y., Pham, P., & Ng, A. (2010). Unsupervised feature learning for audio classification using convolutional deep belief networks. In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1096-1104). Red Hook, NY: Curran.
    • (2010) Advances in neural information processing systems , vol.22 , pp. 1096-1104
    • Lee, H.1    Largman, Y.2    Pham, P.3    Ng, A.4
  • 31
    • 78049417739 scopus 로고    scopus 로고
    • Reinforcement learning on slow features of high-dimensional input streams
    • Legenstein, R., Wilbert, N., & Wiskott, L. (2010). Reinforcement learning on slow features of high-dimensional input streams. PLoS Computational Biology, 6(8), e1000894.
    • (2010) PLoS Computational Biology , vol.6 , Issue.8
    • Legenstein, R.1    Wilbert, N.2    Wiskott, L.3
  • 32
    • 0043262325 scopus 로고
    • Comparison of two unsupervised neural network models for redundancy reduction
    • In M. C.Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & A. S. Weigend (Eds.), Mahwah, NJ: Erlbaum
    • Lindsẗadt, S. (1993). Comparison of two unsupervised neural network models for redundancy reduction. InM. C.Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & A. S. Weigend (Eds.), Proc. of the 1993 Connectionist Models Summer School (pp. 308-315). Mahwah, NJ: Erlbaum.
    • (1993) Proc. of the 1993 Connectionist Models Summer School , pp. 308-315
    • Lindsẗadt, S.1
  • 33
    • 35748957806 scopus 로고    scopus 로고
    • Proto-value functions: A Laplacian framework for learning representation and control in markov decision processes
    • Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Laplacian framework for learning representation and control in markov decision processes. Journal of Machine Learning Research, 8, 2169-2231.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2169-2231
    • Mahadevan, S.1    Maggioni, M.2
  • 34
    • 0039765605 scopus 로고
    • Removing time variation with the anti-Hebbian differential synapse
    • Mitchison, G. (1991). Removing time variation with the anti-Hebbian differential synapse. Neural Computation, 3(3), 312-320.
    • (1991) Neural Computation , vol.3 , Issue.3
    • Mitchison, G.1
  • 35
    • 0020464111 scopus 로고
    • Simplified neuron model as a principal component analyzer
    • Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15(3), 267-273.
    • (1982) Journal of Mathematical Biology , vol.15 , Issue.3 , pp. 267-273
    • Oja, E.1
  • 36
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • Oja, E. (1985).On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis and Applications, 106, 69-84.
    • (1985) Journal of Mathematical Analysis and Applications , vol.106 , pp. 69-84
    • Oja, E.1
  • 37
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • Oja, E. (1989). Neural networks, principal components, and subspaces. International Journal of Neural Systems, 1(1), 61-68.
    • (1989) International Journal of Neural Systems , vol.1 , Issue.1 , pp. 61-68
    • Oja, E.1
  • 38
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural Networks, 5(6), 927-935.
    • (1992) Neural Networks , vol.5 , Issue.6 , pp. 927-935
    • Oja, E.1
  • 39
    • 0015145985 scopus 로고
    • The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat
    • O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171-175.
    • (1971) Brain Research , vol.34 , pp. 171-175
    • O'Keefe, J.1    Dostrovsky, J.2
  • 40
    • 0000805239 scopus 로고
    • Object recognition and sensitive periods: A computational analysis of visual imprinting
    • O'Reilly, R., & Johnson, M. (1994). Object recognition and sensitive periods: A computational analysis of visual imprinting. Neural Computation, 6(3), 357-389.
    • (1994) Neural Computation , vol.6 , Issue.3 , pp. 357-389
    • O'Reilly, R.1    Johnson, M.2
  • 42
    • 58449110876 scopus 로고    scopus 로고
    • Novel incremental principal component analysis with improved performance
    • New York: Springer
    • Park, M., & Choi, J. (2008). Novel incremental principal component analysis with improved performance. In Structural, syntactic, and statistical pattern recognition, (pp. 592-601). New York: Springer.
    • (2008) Structural, syntactic, and statistical pattern recognition , pp. 592-601
    • Park, M.1    Choi, J.2
  • 44
    • 34548456303 scopus 로고    scopus 로고
    • Convergence analysis of a simple minor component analysis algorithm
    • Peng,D., Yi, Z.,&Luo,W. (2007).Convergence analysis of a simple minor component analysis algorithm. Neural Networks, 20(7), 842-850.
    • (2007) Neural Networks , vol.20 , Issue.7 , pp. 842-850
    • Peng, D.1    Yi, Z.2    Luo, W.3
  • 45
    • 0032864399 scopus 로고    scopus 로고
    • Spatial view cells and the representation of place in the primate hippocampus
    • Rolls, E. (1999). Spatial view cells and the representation of place in the primate hippocampus. Hippocampus, 9(4), 467-480.
    • (1999) Hippocampus , vol.9 , Issue.4 , pp. 467-480
    • Rolls, E.1
  • 46
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • Sanger, T. (1989).Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2(6), 459-473.
    • (1989) Neural Networks , vol.2 , Issue.6 , pp. 459-473
    • Sanger, T.1
  • 47
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • Schmidhuber, J. (1992a). Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2), 234-242.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 48
    • 0040422903 scopus 로고
    • Learning factorial codes by predictability minimization
    • Schmidhuber, J. (1992b). Learning factorial codes by predictability minimization. Neural Computation, 4(6), 863-879.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 863-879
    • Schmidhuber, J.1
  • 49
    • 0348068168 scopus 로고
    • Learning unambiguous reduced sequence descriptions
    • In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), San Francisco: Morgan Kaufmann
    • Schmidhuber, J. (1992c). Learning unambiguous reduced sequence descriptions. In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), Advances in neural information processing systems (pp. 291-298). San Francisco: Morgan Kaufmann.
    • (1992) Advances in neural information processing systems , pp. 291-298
    • Schmidhuber, J.1
  • 50
    • 84874197433 scopus 로고    scopus 로고
    • Neural predictors for detecting and removing redundant information
    • In H. Cruse, J. Dean,&H. Ritter (Eds.), New York: Kluwer
    • Schmidhuber, J. (1999). Neural predictors for detecting and removing redundant information. In H. Cruse, J. Dean,&H. Ritter (Eds.), Adaptive behavior and learning. New York: Kluwer.
    • (1999) Adaptive behavior and learning
    • Schmidhuber, J.1
  • 51
    • 84856370602 scopus 로고    scopus 로고
    • On the relation of slow feature analysis and Laplacian eigenmaps
    • Sprekeler, H. (2011). On the relation of slow feature analysis and Laplacian eigenmaps. Neural Computation, 23, 3287-3302.
    • (2011) Neural Computation , vol.23 , pp. 3287-3302
    • Sprekeler, H.1
  • 52
  • 54
    • 0025271164 scopus 로고
    • Head-direction cells recorded from the postsubiculum in freely moving rats I. description and quantitative analysis
    • Taube, J., Muller, R., & Ranck, J. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435.
    • (1990) Journal of Neuroscience , vol.10 , Issue.2 , pp. 420-435
    • Taube, J.1    Muller, R.2    Ranck, J.3
  • 56
    • 0031040957 scopus 로고    scopus 로고
    • Invariant face and object recognition in the visual system
    • Wallis, G., & Rolls, E. (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology, 51(2), 167-194.
    • (1997) Progress in Neurobiology , vol.51 , Issue.2 , pp. 167-194
    • Wallis, G.1    Rolls, E.2
  • 58
    • 40649110906 scopus 로고    scopus 로고
    • Optimal in-place learning and the lobe component analysis
    • Piscataway, NJ: IEEE
    • Weng, J., & Zhang, N. (2006). Optimal in-place learning and the lobe component analysis. In International Joint Conference on Neural Networks, 2006 (pp. 3887-3894). Piscataway, NJ: IEEE.
    • (2006) International Joint Conference on Neural Networks, 2006 , pp. 3887-3894
    • Weng, J.1    Zhang, N.2
  • 60
    • 78651460123 scopus 로고    scopus 로고
    • Estimating driving forces of nonstationary time series with slow feature analysis
    • Arxiv preprint cond-mat/0312317
    • Wiskott, L. (2003). Estimating driving forces of nonstationary time series with slow feature analysis. Arxiv preprint cond-mat/0312317.
    • (2003)
    • Wiskott, L.1
  • 62
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715-770.
    • Neural Computation , vol.14 , Issue.4 , pp. 715-777
    • Wiskott, L.1    Sejnowski, T.2002).2
  • 63
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • Xu, L., Oja, E., & Suen, C. (1992). Modified Hebbian learning for curve and surface fitting. Neural Networks, 5(3), 441-457.
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.3
  • 65
    • 70749091028 scopus 로고    scopus 로고
    • Modular toolkit for data processing (MDP): A Python data processing framework
    • Zito, N., Wilbert, L. W., & Berkes, P. (2008). Modular toolkit for data processing (MDP): A Python data processing framework. Frontiers in Neuroinformatics, 2.
    • (2008) Frontiers in Neuroinformatics
    • Zito, N.1    Wilbert, L.W.2    Berkes, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.