-
1
-
-
0009775381
-
-
(Ed.). Piscataway, NJ: IEEE Press
-
Abut, H. (Ed.) (1990). Vector quantization. Piscataway, NJ: IEEE Press.
-
(1990)
Vector quantization
-
-
Abut, H.1
-
2
-
-
0017392285
-
Neural theory of association and concept-formation
-
Amari, S. (1977). Neural theory of association and concept-formation. Biological Cybernetics, 26(3), 175-185.
-
(1977)
Biological Cybernetics
, vol.26
, Issue.3
, pp. 175-185
-
-
Amari, S.1
-
4
-
-
84858720675
-
Slow, decorrelated features for pretraining complex cell-like networks
-
In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Red Hook NY: Curran
-
Bergstra, J., & Bengio, Y. (2009). Slow, decorrelated features for pretraining complex cell-like networks. In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 99-107). Red Hook, NY: Curran.
-
(2009)
Advances in neural information processing systems
, vol.22
, pp. 99-107
-
-
Bergstra, J.1
Bengio, Y.2
-
5
-
-
0033750718
-
Algorithms for accelerated convergence of adaptive PCA
-
Chatterjee, C., Kang, Z., & Roychowdhury, V. (2000). Algorithms for accelerated convergence of adaptive PCA. IEEE Transactions on Neural Networks, 11(2), 338-355.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.2
, pp. 338-355
-
-
Chatterjee, C.1
Kang, Z.2
Roychowdhury, V.3
-
6
-
-
0345627997
-
A unified algorithm for principal and minor components extraction
-
Chen, T., Amari, S., & Lin, Q. (1998). A unified algorithm for principal and minor components extraction. Neural Networks, 11(3), 385-390.
-
(1998)
Neural Networks
, vol.11
, Issue.3
, pp. 385-390
-
-
Chen, T.1
Amari, S.2
Lin, Q.3
-
7
-
-
0035362693
-
Sequential extraction of minor components
-
Chen, T., Amari, S., & Murata, N. (2001). Sequential extraction of minor components. Neural Processing Letters, 13(3), 195-201.
-
(2001)
Neural Processing Letters
, vol.13
, Issue.3
, pp. 195-201
-
-
Chen, T.1
Amari, S.2
Murata, N.3
-
8
-
-
0028416938
-
Independent component analysis, A new concept?
-
Comon, P. (1994). Independent component analysis, A new concept? Signal Processing, 36, 287-314.
-
(1994)
Signal Processing
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
10
-
-
84891726570
-
-
Doersch, C., Lee, T., Huang, G., & Miller, E. (2010). Temporal continuity learning for convolutional deep belief networks.
-
(2010)
Temporal continuity learning for convolutional deep belief networks
-
-
Doersch, C.1
Lee, T.2
Huang, G.3
Miller, E.4
-
11
-
-
0000188120
-
Learning invariance from transformation sequences
-
F̈oldíak, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194-200.
-
(1991)
Neural Computation
, vol.3
, Issue.2
, pp. 194-200
-
-
F̈oldíak, P.1
-
13
-
-
34548412214
-
Slowness and sparseness lead to place, head-direction, and spatial-view cells
-
Franzius, M., Sprekeler, H., & Wiskott, L. (2007). Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8), e166.
-
(2007)
PLoS Computational Biology
, vol.3
, Issue.8
-
-
Franzius, M.1
Sprekeler, H.2
Wiskott, L.3
-
14
-
-
79961201557
-
Sequential constant size compressors for reinforcement learning
-
Berlin: Springer
-
Gisslen, L., Luciw, M., Graziano, V., & Schmidhuber, J. (2011). Sequential constant size compressors for reinforcement learning. In Fourth Conference on Artificial General Intelligence (AGI). Berlin: Springer.
-
(2011)
Fourth Conference on Artificial General Intelligence (AGI)
-
-
Gisslen, L.1
Luciw, M.2
Graziano, V.3
Schmidhuber, J.4
-
15
-
-
0032397673
-
Lanczos' generalized derivative
-
Groetsch, C. W. (1998). Lanczos' generalized derivative. American Mathematical Monthly, 105(4), 320-326.
-
(1998)
American Mathematical Monthly
, vol.105
, Issue.4
, pp. 320-326
-
-
Groetsch, C.W.1
-
16
-
-
0018861680
-
How does a brain build a cognitive code?
-
Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87(1), 1-5.
-
(1980)
Psychological Review
, vol.87
, Issue.1
, pp. 1-5
-
-
Grossberg, S.1
-
17
-
-
23844454091
-
Microstructure of a spatial map in the entorhinal cortex
-
3022
-
Hafting, T., Fyhn, M.,Molden, S.,Moser,M., &Moser, E. (2005).Microstructure of a spatial map in the entorhinal cortex. Nature, 7052, 801-806. 3022
-
(2005)
Nature
, vol.7052
, pp. 801-806
-
-
Hafting, T.1
Fyhn, M.2
Molden, S.3
Moser, M.4
Moser, E.5
-
18
-
-
0024732792
-
Connectionist learning procedures
-
V. Kompella, M. Luciw, and J. Schmidhuber Hinton, G. (1989). Connectionist learning procedures. Artificial Intelligence, 40(1-3), 185-234.
-
(1989)
Artificial Intelligence
, vol.40
, Issue.1-3
, pp. 185-234
-
-
Kompella, V.1
Luciw, M.2
Schmidhuber Hinton, J.G.3
-
19
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comp., 14(8), 1771-1800.
-
(2002)
Neural Comp.
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
20
-
-
0003905759
-
-
Hoboken, NJ:Wiley
-
Hyv̈arinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. Hoboken, NJ:Wiley.
-
(2001)
Independent component analysis
-
-
Hyv̈arinen, A.1
Karhunen, J.2
Oja, E.3
-
25
-
-
84865105130
-
Incremental slow feature analysis
-
Menlo Park, CA: AAAI Press
-
Kompella,V., Luciw, M.,&Schmidhuber, J. (2011). Incremental slow feature analysis. In International Joint Conference of Artificial Intelligence. Menlo Park, CA: AAAI Press.
-
(2011)
International Joint Conference of Artificial Intelligence
-
-
Kompella, V.1
Luciw, M.2
Schmidhuber, J.3
-
26
-
-
84856318058
-
Autoincsfa and vision-based developmental learning for humanoid robots
-
Piscataway, NJ: IEEE
-
Kompella, V. R., Pape, L., Masci, J., Frank, M., & Schmidhuber, J. (2011). Autoincsfa and vision-based developmental learning for humanoid robots. In IEEE-RAS International Conference on Humanoid Robots. Piscataway, NJ: IEEE.
-
(2011)
IEEE-RAS International Conference on Humanoid Robots
-
-
Kompella, V.R.1
Pape, L.2
Masci, J.3
Frank, M.4
Schmidhuber, J.5
-
27
-
-
0000382262
-
Method of stochastic approximation in the determination of the largest eigenvalue of the mathematical expectation of random matrices
-
Krasulina, T. (1970).Method of stochastic approximation in the determination of the largest eigenvalue of the mathematical expectation of random matrices. Automat.Remote Contr, 2, 215-221.
-
(1970)
Automat.Remote Contr
, vol.2
, pp. 215-221
-
-
Krasulina, T.1
-
29
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee, D., & Seung, H. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.1
Seung, H.2
-
30
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Red Hook, NY: Curran
-
Lee, H., Largman, Y., Pham, P., & Ng, A. (2010). Unsupervised feature learning for audio classification using convolutional deep belief networks. In D. Koller, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1096-1104). Red Hook, NY: Curran.
-
(2010)
Advances in neural information processing systems
, vol.22
, pp. 1096-1104
-
-
Lee, H.1
Largman, Y.2
Pham, P.3
Ng, A.4
-
31
-
-
78049417739
-
Reinforcement learning on slow features of high-dimensional input streams
-
Legenstein, R., Wilbert, N., & Wiskott, L. (2010). Reinforcement learning on slow features of high-dimensional input streams. PLoS Computational Biology, 6(8), e1000894.
-
(2010)
PLoS Computational Biology
, vol.6
, Issue.8
-
-
Legenstein, R.1
Wilbert, N.2
Wiskott, L.3
-
32
-
-
0043262325
-
Comparison of two unsupervised neural network models for redundancy reduction
-
In M. C.Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & A. S. Weigend (Eds.), Mahwah, NJ: Erlbaum
-
Lindsẗadt, S. (1993). Comparison of two unsupervised neural network models for redundancy reduction. InM. C.Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & A. S. Weigend (Eds.), Proc. of the 1993 Connectionist Models Summer School (pp. 308-315). Mahwah, NJ: Erlbaum.
-
(1993)
Proc. of the 1993 Connectionist Models Summer School
, pp. 308-315
-
-
Lindsẗadt, S.1
-
33
-
-
35748957806
-
Proto-value functions: A Laplacian framework for learning representation and control in markov decision processes
-
Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Laplacian framework for learning representation and control in markov decision processes. Journal of Machine Learning Research, 8, 2169-2231.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 2169-2231
-
-
Mahadevan, S.1
Maggioni, M.2
-
34
-
-
0039765605
-
Removing time variation with the anti-Hebbian differential synapse
-
Mitchison, G. (1991). Removing time variation with the anti-Hebbian differential synapse. Neural Computation, 3(3), 312-320.
-
(1991)
Neural Computation
, vol.3
, Issue.3
-
-
Mitchison, G.1
-
35
-
-
0020464111
-
Simplified neuron model as a principal component analyzer
-
Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15(3), 267-273.
-
(1982)
Journal of Mathematical Biology
, vol.15
, Issue.3
, pp. 267-273
-
-
Oja, E.1
-
36
-
-
0022013023
-
On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
-
Oja, E. (1985).On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis and Applications, 106, 69-84.
-
(1985)
Journal of Mathematical Analysis and Applications
, vol.106
, pp. 69-84
-
-
Oja, E.1
-
37
-
-
0002399288
-
Neural networks, principal components, and subspaces
-
Oja, E. (1989). Neural networks, principal components, and subspaces. International Journal of Neural Systems, 1(1), 61-68.
-
(1989)
International Journal of Neural Systems
, vol.1
, Issue.1
, pp. 61-68
-
-
Oja, E.1
-
38
-
-
0026954958
-
Principal components, minor components, and linear neural networks
-
Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural Networks, 5(6), 927-935.
-
(1992)
Neural Networks
, vol.5
, Issue.6
, pp. 927-935
-
-
Oja, E.1
-
39
-
-
0015145985
-
The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat
-
O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171-175.
-
(1971)
Brain Research
, vol.34
, pp. 171-175
-
-
O'Keefe, J.1
Dostrovsky, J.2
-
40
-
-
0000805239
-
Object recognition and sensitive periods: A computational analysis of visual imprinting
-
O'Reilly, R., & Johnson, M. (1994). Object recognition and sensitive periods: A computational analysis of visual imprinting. Neural Computation, 6(3), 357-389.
-
(1994)
Neural Computation
, vol.6
, Issue.3
, pp. 357-389
-
-
O'Reilly, R.1
Johnson, M.2
-
41
-
-
0003663467
-
-
New York: McGraw-Hill
-
Papoulis, A., Pillai, S., & Unnikrishna, S. (1965). Probability, random variables, and stochastic processes. New York: McGraw-Hill.
-
(1965)
Probability, random variables, and stochastic processes
-
-
Papoulis, A.1
Pillai, S.2
Unnikrishna, S.3
-
42
-
-
58449110876
-
Novel incremental principal component analysis with improved performance
-
New York: Springer
-
Park, M., & Choi, J. (2008). Novel incremental principal component analysis with improved performance. In Structural, syntactic, and statistical pattern recognition, (pp. 592-601). New York: Springer.
-
(2008)
Structural, syntactic, and statistical pattern recognition
, pp. 592-601
-
-
Park, M.1
Choi, J.2
-
43
-
-
84891730153
-
A new algorithm for sequential minor component analysis
-
Peng, D., & Yi, Z. (2006). A new algorithm for sequential minor component analysis. International Journal of Computational Intelligence Research, 2(2), 207-215.
-
(2006)
International Journal of Computational Intelligence Research
, vol.2
, Issue.2
, pp. 207-215
-
-
Peng, D.1
Yi, Z.2
-
44
-
-
34548456303
-
Convergence analysis of a simple minor component analysis algorithm
-
Peng,D., Yi, Z.,&Luo,W. (2007).Convergence analysis of a simple minor component analysis algorithm. Neural Networks, 20(7), 842-850.
-
(2007)
Neural Networks
, vol.20
, Issue.7
, pp. 842-850
-
-
Peng, D.1
Yi, Z.2
Luo, W.3
-
45
-
-
0032864399
-
Spatial view cells and the representation of place in the primate hippocampus
-
Rolls, E. (1999). Spatial view cells and the representation of place in the primate hippocampus. Hippocampus, 9(4), 467-480.
-
(1999)
Hippocampus
, vol.9
, Issue.4
, pp. 467-480
-
-
Rolls, E.1
-
46
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network
-
Sanger, T. (1989).Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2(6), 459-473.
-
(1989)
Neural Networks
, vol.2
, Issue.6
, pp. 459-473
-
-
Sanger, T.1
-
47
-
-
0001033889
-
Learning complex, extended sequences using the principle of history compression
-
Schmidhuber, J. (1992a). Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2), 234-242.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 234-242
-
-
Schmidhuber, J.1
-
48
-
-
0040422903
-
Learning factorial codes by predictability minimization
-
Schmidhuber, J. (1992b). Learning factorial codes by predictability minimization. Neural Computation, 4(6), 863-879.
-
(1992)
Neural Computation
, vol.4
, Issue.6
, pp. 863-879
-
-
Schmidhuber, J.1
-
49
-
-
0348068168
-
Learning unambiguous reduced sequence descriptions
-
In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), San Francisco: Morgan Kaufmann
-
Schmidhuber, J. (1992c). Learning unambiguous reduced sequence descriptions. In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), Advances in neural information processing systems (pp. 291-298). San Francisco: Morgan Kaufmann.
-
(1992)
Advances in neural information processing systems
, pp. 291-298
-
-
Schmidhuber, J.1
-
50
-
-
84874197433
-
Neural predictors for detecting and removing redundant information
-
In H. Cruse, J. Dean,&H. Ritter (Eds.), New York: Kluwer
-
Schmidhuber, J. (1999). Neural predictors for detecting and removing redundant information. In H. Cruse, J. Dean,&H. Ritter (Eds.), Adaptive behavior and learning. New York: Kluwer.
-
(1999)
Adaptive behavior and learning
-
-
Schmidhuber, J.1
-
51
-
-
84856370602
-
On the relation of slow feature analysis and Laplacian eigenmaps
-
Sprekeler, H. (2011). On the relation of slow feature analysis and Laplacian eigenmaps. Neural Computation, 23, 3287-3302.
-
(2011)
Neural Computation
, vol.23
, pp. 3287-3302
-
-
Sprekeler, H.1
-
52
-
-
84872232047
-
Slowness: An objective for spiketiming-dependent plasticity
-
Sprekeler, H., Michaelis, C., & Wiskott, L. (2007). Slowness: An objective for spiketiming- dependent plasticity? PLoS Computational Biology, 3(6), e112.
-
(2007)
PLoS Computational Biology
, vol.3
, Issue.6
-
-
Sprekeler, H.1
Michaelis, C.2
Wiskott, L.3
-
54
-
-
0025271164
-
Head-direction cells recorded from the postsubiculum in freely moving rats I. description and quantitative analysis
-
Taube, J., Muller, R., & Ranck, J. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435.
-
(1990)
Journal of Neuroscience
, vol.10
, Issue.2
, pp. 420-435
-
-
Taube, J.1
Muller, R.2
Ranck, J.3
-
55
-
-
77954478972
-
An open-source simulator for cognitive robotics research: The prototype of the iCub humanoid robot simulator
-
New York: ACM
-
Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., & Nori, F. (2008). An open-source simulator for cognitive robotics research: The prototype of the iCub humanoid robot simulator. In Proceedings of the 8thWorkshop on Performance Metrics for Intelligence Systems (pp. 57-61). New York: ACM.
-
(2008)
Proceedings of the 8thWorkshop on Performance Metrics for Intelligence Systems
, pp. 57-61
-
-
Tikhanoff, V.1
Cangelosi, A.2
Fitzpatrick, P.3
Metta, G.4
Natale, L.5
Nori, F.6
-
56
-
-
0031040957
-
Invariant face and object recognition in the visual system
-
Wallis, G., & Rolls, E. (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology, 51(2), 167-194.
-
(1997)
Progress in Neurobiology
, vol.51
, Issue.2
, pp. 167-194
-
-
Wallis, G.1
Rolls, E.2
-
57
-
-
0030094135
-
A unified neural bigradient algorithm for robust PCA and MCA
-
V. Kompella, M. Luciw, and J. Schmidhuber Wang, L., & Karhunen, J. (1996). A unified neural bigradient algorithm for robust PCA and MCA. International Journal of Neural Systems, 7(1), 53-67.
-
(1996)
International Journal of Neural Systems
, vol.7
, Issue.1
, pp. 53-67
-
-
Kompella, V.1
Luciw, M.2
Schmidhuber Wang, L.3
Karhunen, J.4
-
58
-
-
40649110906
-
Optimal in-place learning and the lobe component analysis
-
Piscataway, NJ: IEEE
-
Weng, J., & Zhang, N. (2006). Optimal in-place learning and the lobe component analysis. In International Joint Conference on Neural Networks, 2006 (pp. 3887-3894). Piscataway, NJ: IEEE.
-
(2006)
International Joint Conference on Neural Networks, 2006
, pp. 3887-3894
-
-
Weng, J.1
Zhang, N.2
-
59
-
-
0041471247
-
Candid covariance-free incremental principal component analysis
-
Weng, J., Zhang, Y., & Hwang, W. (2003). Candid covariance-free incremental principal component analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(8), 1034-1040.
-
(2003)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.25
, Issue.8
, pp. 1034-1040
-
-
Weng, J.1
Zhang, Y.2
Hwang, W.3
-
60
-
-
78651460123
-
Estimating driving forces of nonstationary time series with slow feature analysis
-
Arxiv preprint cond-mat/0312317
-
Wiskott, L. (2003). Estimating driving forces of nonstationary time series with slow feature analysis. Arxiv preprint cond-mat/0312317.
-
(2003)
-
-
Wiskott, L.1
-
61
-
-
84887282722
-
Slow featureanalysis
-
Wiskott, L., Berkes, P., Franzius, M., Sprekeler, H., &Wilbert, N. (2011). Slow featureanalysis. Scholarpedia, 6(4), 52-82.
-
(2011)
Scholarpedia
, vol.6
, Issue.4
, pp. 52-82
-
-
Wiskott, L.1
Berkes, P.2
Franzius, M.3
Sprekeler, H.4
Wilbert, N.5
-
62
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715-770.
-
Neural Computation
, vol.14
, Issue.4
, pp. 715-777
-
-
Wiskott, L.1
Sejnowski, T.2002).2
-
63
-
-
0026745682
-
Modified Hebbian learning for curve and surface fitting
-
Xu, L., Oja, E., & Suen, C. (1992). Modified Hebbian learning for curve and surface fitting. Neural Networks, 5(3), 441-457.
-
(1992)
Neural Networks
, vol.5
, Issue.3
, pp. 441-457
-
-
Xu, L.1
Oja, E.2
Suen, C.3
-
65
-
-
70749091028
-
Modular toolkit for data processing (MDP): A Python data processing framework
-
Zito, N., Wilbert, L. W., & Berkes, P. (2008). Modular toolkit for data processing (MDP): A Python data processing framework. Frontiers in Neuroinformatics, 2.
-
(2008)
Frontiers in Neuroinformatics
-
-
Zito, N.1
Wilbert, L.W.2
Berkes, P.3
|