메뉴 건너뛰기




Volumn 48, Issue 10, 2015, Pages 2964-2982

Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle

Author keywords

Deep learning; Invariant representation; Self taught learning; Temporal slowness; Visual tracking

Indexed keywords

DEEP LEARNING; LOGISTIC REGRESSION; SAMPLING;

EID: 84931572897     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.02.012     Document Type: Article
Times cited : (42)

References (51)
  • 3
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • D.A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang Incremental learning for robust visual tracking Int. J. Comput. Vis. 77 1-3 2008 125 141
    • (2008) Int. J. Comput. Vis. , vol.77 , Issue.1-3 , pp. 125-141
    • Ross, D.A.1    Lim, J.2    Lin, R.-S.3    Yang, M.-H.4
  • 4
    • 84875886116 scopus 로고    scopus 로고
    • Efficient online subspace learning with an indefinite kernel for visual tracking and recognition
    • S. Liwicki, S. Zafeiriou, G. Tzimiropoulos, and M. Pantic Efficient online subspace learning with an indefinite kernel for visual tracking and recognition IEEE Trans. Neural Netw. Learn. Syst. 23 10 2012 1624 1636
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.10 , pp. 1624-1636
    • Liwicki, S.1    Zafeiriou, S.2    Tzimiropoulos, G.3    Pantic, M.4
  • 5
    • 80054978321 scopus 로고    scopus 로고
    • Correlation-based incremental visual tracking
    • M. Kim Correlation-based incremental visual tracking Pattern Recognit. 45 3 2012 1050 1060
    • (2012) Pattern Recognit. , vol.45 , Issue.3 , pp. 1050-1060
    • Kim, M.1
  • 11
    • 84866051181 scopus 로고    scopus 로고
    • Real-time visual tracking via online weighted multiple instance learning
    • K. Zhang, and H. Song Real-time visual tracking via online weighted multiple instance learning Pattern Recognit. 46 1 2013 397 411
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 397-411
    • Zhang, K.1    Song, H.2
  • 14
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning a review and new perspectives
    • Y. Bengio Representation learning a review and new perspectives IEEE Trans. Pattern Anal. Mach. Intell. 35 8 2013 1798 1828
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1
  • 38
    • 0017951681 scopus 로고
    • On the analysis of accumulative difference pictures from image sequences of real world scenes
    • R. Jain, and H.-H. Nagel On the analysis of accumulative difference pictures from image sequences of real world scenes IEEE Trans. Pattern Anal. Mach. Intell. 1 2 1979 206 214
    • (1979) IEEE Trans. Pattern Anal. Mach. Intell. , vol.1 , Issue.2 , pp. 206-214
    • Jain, R.1    Nagel, H.-H.2
  • 39
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • ISSN 0920-5691
    • I. Laptev On space-time interest points Int. J. Comput. Vis. 64 2-3 2005 107 123 ISSN 0920-5691
    • (2005) Int. J. Comput. Vis. , vol.64 , Issue.2-3 , pp. 107-123
    • Laptev, I.1
  • 41
    • 77957774108 scopus 로고    scopus 로고
    • Human tracking using convolutional neural networks
    • J. Fan, W. Xu, Y. Wu, and Y. Gong Human tracking using convolutional neural networks IEEE Trans. Neural Netw. 21 10 2010 1610 1623
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.10 , pp. 1610-1623
    • Fan, J.1    Xu, W.2    Wu, Y.3    Gong, Y.4
  • 42
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • N. Gordon, D. Salmond, and A.F.M. Smith Novel approach to nonlinear/non-Gaussian Bayesian state estimation IEE Proc. Radar Signal Process. 140 2 1993 107 113
    • (1993) IEE Proc. Radar Signal Process. , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.F.M.3
  • 43
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking IEEE Trans. Signal Process. 50 2 2002 174 188
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 47
    • 84884832249 scopus 로고    scopus 로고
    • Real-Time object tracking via online discriminative feature selection
    • K. Zhang, L. Zhang, and M.-H. Yang Real-Time object tracking via online discriminative feature selection IEEE Trans. Image Process. 22 12 2013 4664 4677
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.12 , pp. 4664-4677
    • Zhang, K.1    Zhang, L.2    Yang, M.-H.3
  • 48
    • 84866604392 scopus 로고    scopus 로고
    • Object tracking via partial least squares analysis
    • Q. Wang, F. Chen, W. Xu, and M.-H. Yang Object tracking via partial least squares analysis IEEE Trans. Image Process. 21 10 2012 4454 4465
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.10 , pp. 4454-4465
    • Wang, Q.1    Chen, F.2    Xu, W.3    Yang, M.-H.4
  • 49
    • 84871648489 scopus 로고    scopus 로고
    • Online object tracking with sparse prototypes
    • D. Wang, H. Lu, and M.-H. Yang Online object tracking with sparse prototypes IEEE Trans. Image Process. 22 1 2013 314 325
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.1 , pp. 314-325
    • Wang, D.1    Lu, H.2    Yang, M.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.