메뉴 건너뛰기




Volumn 4, Issue 4, 2013, Pages

A survey of appearance models in visual object tracking

Author keywords

Appearance model; Features; Statistical modeling; Visual object tracking

Indexed keywords

APPEARANCE MODELING; FEATURES; ILLUMINATION VARIATION; PARTIAL OCCLUSIONS; STATISTICAL MODELING; VISUAL OBJECT TRACKING; VISUAL REPRESENTATIONS; VISUAL SURVEILLANCE;

EID: 84885606175     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2508037.2508039     Document Type: Review
Times cited : (723)

References (200)
  • 4
    • 34548412123 scopus 로고    scopus 로고
    • Geometric means in a novel vector space structure on symmetric positive-definite matrices
    • ARSIGNY, V., FILLARD, P., PENNEC, X., AND AYACHE, N. 2006. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29, 1, 328-347.
    • (2006) SIAM J. Matrix Anal. Appl. , vol.29 , Issue.1 , pp. 328-347
    • Arsigny, V.1    Fillard, P.2    Pennec, X.3    Ayache, N.4
  • 5
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking
    • ARULAMPALAM, M. S., MASKELL, S., GORDON, N., AND CLAPP, T. 2002. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Proces. 50, 2, 174-188.
    • (2002) IEEE Trans. Signal Proces. , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 6
    • 78049297476 scopus 로고    scopus 로고
    • Region covariance matrix-based object tracking with occlusions handling
    • Springer Berlin
    • AUSTVOLL, I. AND KWOLEK, B. 2010. Region covariance matrix-based object tracking with occlusions handling. In Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 6374, Springer Berlin, 201-208.
    • (2010) Computer Vision and Graphics, Lecture Notes in Computer Science , vol.6374 , pp. 201-208
    • Austvoll, I.1    Kwolek, B.2
  • 16
    • 0029772518 scopus 로고    scopus 로고
    • The robust estimation ofmultiplemotions: Parametric and piecewise-smooth flow fields
    • BLACK,M. AND ANANDAN, P. 1996. The robust estimation ofmultiplemotions: Parametric and piecewise-smooth flow fields. Comput. Vision Image Understand. 63, 75-104.
    • (1996) Comput. Vision Image Understand. , vol.63 , pp. 75-104
    • Black, M.1    Anandan, P.2
  • 17
    • 84957571898 scopus 로고    scopus 로고
    • Eigentracking: Robust matching and tracking of articulated objects using view-based representation
    • BLACK, M. J. AND JEPSON, A. D. 1996. Eigentracking: Robust matching and tracking of articulated objects using view-based representation. In Proceedings of the European Conference on Computer Vision. 329-342.
    • (1996) Proceedings of the European Conference on Computer Vision. , pp. 329-342
    • Black, M.J.1    Jepson, A.D.2
  • 19
    • 84944416149 scopus 로고    scopus 로고
    • Incremental singular value decomposition of uncertain data with missing values
    • BRAND, M. 2002. Incremental singular value decomposition of uncertain data with missing values. In Proceedings of the European Conference on Computer Vision. 707-720.
    • (2002) Proceedings of the European Conference on Computer Vision. , pp. 707-720
    • Brand, M.1
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • BREIMAN, L. 2001. Random forests. Mach. Learn. 45, 1, 5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 23
    • 34249337437 scopus 로고    scopus 로고
    • Incremental kernel principal component analysis
    • CHIN, T. J. AND SUTER, D. 2007. Incremental kernel principal component analysis. IEEE Trans. Image Process. 16, 6, 1662-1674.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.6 , pp. 1662-1674
    • Chin, T.J.1    Suter, D.2
  • 24
    • 0032147322 scopus 로고    scopus 로고
    • A real-Time computer vision system for vehicle tracking and traffic surveillance
    • COIFMAN, B., BEYMER, D.,MCLAUCHLAN, P., AND MALIK, J. 1998. A real-Time computer vision system for vehicle tracking and traffic surveillance. Transport. Res. Part C 6, 4, 271-288.
    • (1998) Transport. Res. Part C , vol.6 , Issue.4 , pp. 271-288
    • Coifman, B.1    Beymer, D.2    Mclauchlan, P.3    Malik, J.4
  • 29
    • 33748140792 scopus 로고    scopus 로고
    • Dynamical statistical shape priors for level set based tracking
    • CREMERS, D. 2006. Dynamical statistical shape priors for level set based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1262-1273.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 1262-1273
    • Cremers, D.1
  • 32
    • 85050116435 scopus 로고    scopus 로고
    • Linear regression and adaptive appearance models for fast simultaneous modelling and tracking
    • ELLIS, L.,DOWSON, N.,MATAS, J., AND BOWDEN, R. 2010. Linear regression and adaptive appearance models for fast simultaneous modelling and tracking. Int. J. Comput. Vision.
    • (2010) Int. J. Comput. Vision
    • Ellis, L.1    Dowson, N.2    Matas, J.3    Bowden, R.4
  • 37
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • FRIEDMAN, J. 2001. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 5, 1189-1232.
    • (2001) Ann. Stat. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 39
    • 34247582309 scopus 로고    scopus 로고
    • Increasing the discrimination power of the co-occurrence matrix-based features
    • GELZINIS, A., VERIKAS, A., AND BACAUSKIENE, M. 2007. Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recog. 40, 9, 2367-2372.
    • (2007) Pattern Recog. , vol.40 , Issue.9 , pp. 2367-2372
    • Gelzinis, A.1    Verikas, A.2    Bacauskiene, M.3
  • 40
    • 3042580897 scopus 로고    scopus 로고
    • Point matching under large image deformations and illumination changes
    • GEORGESCU, B. AND MEER, P. 2004. Point matching under large image deformations and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 26, 674-689.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , pp. 674-689
    • Georgescu, B.1    Meer, P.2
  • 48
    • 0032179948 scopus 로고    scopus 로고
    • Efficient region tracking with paramteric models of geometry and illumination
    • HAGER, G. AND BELHUMEUR, P. 1998. Efficient region tracking with paramteric models of geometry and illumination. IEEE Trans. Pattern Anal. Mach. Intell. 20, 10, 1125-1139.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.10 , pp. 1125-1139
    • Hager, G.1    Belhumeur, P.2
  • 49
    • 45349101870 scopus 로고    scopus 로고
    • Sequential kernel density approximation and its application to real-Time visual tracking
    • HAN, B., COMANICIU, D., ZHU, Y., AND DAVIS, L. S. 2008. Sequential kernel density approximation and its application to real-Time visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 30, 7, 1186-1197.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.7 , pp. 1186-1197
    • Han, B.1    Comaniciu, D.2    Zhu, Y.3    Davis, L.S.4
  • 56
    • 0037001640 scopus 로고    scopus 로고
    • Object tracking using the gabor wavelet transform and the golden section algorithm
    • HE, C., ZHENG, Y., AND AHALT, S. 2002. Object tracking using the gabor wavelet transform and the golden section algorithm. IEEE Trans. Multimed. 4, 4, 528-538.
    • (2002) IEEE Trans. Multimed. , vol.4 , Issue.4 , pp. 528-538
    • He, C.1    Zheng, Y.2    Ahalt, S.3
  • 60
    • 0019698606 scopus 로고
    • Determining optical flow
    • HORN, B. K. P. AND SCHUNCK, B. G. 1981. Determining optical flow. Artif. Intell. 17, 185-203.
    • (1981) Artif. Intell. , vol.17 , pp. 185-203
    • Horn, B.K.P.1    Schunck, B.G.2
  • 62
    • 84867787204 scopus 로고    scopus 로고
    • Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model
    • HU, W., LI, X., LUO, W., ZHANG, X.,MAYBANK, S., AND ZHANG, Z. 2012. Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model. IEEE Trans. Pattern Anal. Mach. Intell.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell
    • Hu, W.1    Li, X.2    Luo, W.3    Zhang X.Maybank, S.4    Zhang, Z.5
  • 63
    • 79851515408 scopus 로고    scopus 로고
    • Incremental tensor subspace learning and its applications to foreground segmentation and tracking
    • HU, W., LI, X., ZHANG, X., SHI, X.,MAYBANK, S., AND ZHANG, Z. 2010. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int. J. Comput. Vision 91, 3, 303-327.
    • (2010) Int. J. Comput. Vision , vol.91 , Issue.3 , pp. 303-327
    • Hu, W.1    Li, X.2    Zhang, X.3    Shi X.Maybank, S.4    Zhang, Z.5
  • 66
    • 0032136153 scopus 로고    scopus 로고
    • Condensation-conditional density propagation for tracking
    • ISARD, M. AND BLAKE, A. 1998. Condensation-conditional density propagation for tracking. Int. J. Comput. Vision 29, 1, 2-28.
    • (1998) Int. J. Comput. Vision , vol.29 , Issue.1 , pp. 2-28
    • Isard, M.1    Blake, A.2
  • 67
    • 37849002318 scopus 로고    scopus 로고
    • Modeling inter-camera space-Time and appearance relationships for tracking across non-overlapping views
    • JAVED, O., SHAFIQUE, K., RASHEED, Z., AND SHAH, M. 2008. Modeling inter-camera space-Time and appearance relationships for tracking across non-overlapping views. Comput. Vision Image Understand. 109, 2, 146-162.
    • (2008) Comput. Vision Image Understand. , vol.109 , Issue.2 , pp. 146-162
    • Javed, O.1    Shafique, K.2    Rasheed, Z.3    Shah, M.4
  • 72
    • 85024429815 scopus 로고
    • Anew approach to linear filtering and prediction problems
    • KALMAN,R. 1960. Anew approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 1, 35-45.
    • (1960) Trans. ASME-J. Basic Eng. , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.1
  • 78
    • 57049142065 scopus 로고    scopus 로고
    • Visual tracker using sequential bayesian learning: Discriminative, generative, and hybrid
    • LEI, Y., DING, X., AND WANG, S. 2008. Visual tracker using sequential bayesian learning: Discriminative, generative, and hybrid. IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 38, 6, 1578-1591.
    • (2008) IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. , vol.38 , Issue.6 , pp. 1578-1591
    • Lei, Y.1    Ding, X.2    Wang, S.3
  • 79
    • 57149133100 scopus 로고    scopus 로고
    • Tracking by affine kernel transformations using color and boundary cues
    • LEICHTER, I., LINDENBAUM, M., AND RIVLIN, E. 2009. Tracking by affine kernel transformations using color and boundary cues. IEEE Trans. Pattern Analy. Mach. Intell. 31, 1, 164-171.
    • (2009) IEEE Trans. Pattern Analy. Mach. Intell. , vol.31 , Issue.1 , pp. 164-171
    • Leichter, I.1    Lindenbaum, M.2    Rivlin, E.3
  • 80
    • 75749127316 scopus 로고    scopus 로고
    • Mean shift tracking with multiple reference color histograms
    • LEICHTER, I., LINDENBAUM, M., AND RIVLIN, E. 2010. Mean shift tracking with multiple reference color histograms. Comput. Vision Image Understand. 114, 3, 400-408.
    • (2010) Comput. Vision Image Understand. , vol.114 , Issue.3 , pp. 400-408
    • Leichter, I.1    Lindenbaum, M.2    Rivlin, E.3
  • 83
    • 33745821131 scopus 로고    scopus 로고
    • Keypoint recognition using randomized trees
    • LEPETIT, V. AND FUA, P. 2006. Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28, 9, 1465-1479.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.9 , pp. 1465-1479
    • Lepetit, V.1    Fua, P.2
  • 85
    • 0034247885 scopus 로고    scopus 로고
    • Sequential karhunen-loeve basis extraction and its application to images
    • LEVY, A. AND LINDENBAUM, M. 2000. Sequential karhunen-loeve basis extraction and its application to images. IEEE Trans. Image Process. 9, 8, 1371-1374.
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.8 , pp. 1371-1374
    • Levy, A.1    Lindenbaum, M.2
  • 86
  • 95
    • 2442471723 scopus 로고    scopus 로고
    • On incremental and robust subspace learning
    • LI, Y., XU, L., MORPHETT, J., AND JACOBS, R. 2004. On incremental and robust subspace learning. Pattern Recog. 37, 7, 1509-1518.
    • (2004) Pattern Recog. , vol.37 , Issue.7 , pp. 1509-1518
    • Li, Y.1    Xu, L.2    Morphett, J.3    Jacobs, R.4
  • 106
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • A. J. Simola, P. L. Burtlett, B. Schödie;lkopf, and D. Schuurmans, Eds., MIT Press, Cambridge, MA
    • MASON, L., BAXTER, J., BARTLETT, P., AND FREAN, M. 1999. Functional gradient techniques for combining hypotheses. In Advance in Large Margin Classifiers, A. J. Simola, P. L. Burtlett, B. Schödie;lkopf, and D. Schuurmans, Eds., MIT Press, Cambridge, MA, 221-247.
    • (1999) Advance in Large Margin Classifiers , pp. 221-247
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 107
    • 0035440561 scopus 로고    scopus 로고
    • A novel method for tracking and counting pedestrians in real-Time using a single camera
    • MASOUD, O. AND PAPANIKOLOPOULOS, N. P. 2001. A novel method for tracking and counting pedestrians in real-Time using a single camera. IEEE Trans. Vehicul. Technol. 50, 5, 1267-1278.
    • (2001) IEEE Trans. Vehicul. Technol. , vol.50 , Issue.5 , pp. 1267-1278
    • Masoud, O.1    Papanikolopoulos, N.P.2
  • 108
    • 3042791915 scopus 로고    scopus 로고
    • Active appearance models revisited
    • MATTHEWS, I. AND BAKER, S. 2004. Active appearance models revisited. Int. J. Comput. Vision 60, 2, 135-164.
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 135-164
    • Matthews, I.1    Baker, S.2
  • 109
    • 0033098507 scopus 로고    scopus 로고
    • Tracking colour objects using adaptive mixture models
    • MCKENNA, S., RAJA, Y., AND GONG, S. 1999. Tracking colour objects using adaptive mixture models. Image Vision Comput. 17, 223-229.
    • (1999) Image Vision Comput. , vol.17 , pp. 223-229
    • Mckenna, S.1    Raja, Y.2    Gong, S.3
  • 112
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • NEAL, R. 2001. Annealed importance sampling. Stat. Comput. 11, 2, 125-139.
    • (2001) Stat. Comput. , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.1
  • 115
    • 33744916537 scopus 로고    scopus 로고
    • Robust tracking using foreground-background texture discrimination
    • NGUYEN, H. T. AND SMEULDERS, A. W. M. 2006. Robust tracking using foreground-background texture discrimination. Int. J. Comput. Vision 69, 3, 277-293.
    • (2006) Int. J. Comput. Vision , vol.69 , Issue.3 , pp. 277-293
    • Nguyen, H.T.1    Smeulders, A.W.M.2
  • 117
    • 70450193406 scopus 로고    scopus 로고
    • Robust object tracking using joint color-Texture histogram
    • NING, J., ZHANG, L., ZHANG, D., AND WU, C. 2009. Robust object tracking using joint color-Texture histogram. Int. J. Pattern Recog. Artif. Intell. 23, 7, 1245-1263.
    • (2009) Int. J. Pattern Recog. Artif. Intell. , vol.23 , Issue.7 , pp. 1245-1263
    • Ning, J.1    Zhang, L.2    Zhang, D.3    Wu, C.4
  • 118
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • OJALA, T., PIETIKäINEN, M., AND MäENPää, T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 7, 971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 121
    • 73549086970 scopus 로고    scopus 로고
    • Fast keypoint recognition using random ferns
    • OZUYSAL, M.,CALONDER, M., LEPETIT, V., AND FUA, P. 2009. Fast keypoint recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32, 3, 448-461.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.3 , pp. 448-461
  • 124
    • 0033709161 scopus 로고    scopus 로고
    • Geodesic active contours and level sets for the detection and tracking of moving objects
    • PARAGIOS, N. AND DERICHE, R. 2000. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22, 266-280.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 266-280
    • Paragios, N.1    Deriche, R.2
  • 125
    • 3042553410 scopus 로고    scopus 로고
    • Real-Time face detection and tracking for mobile videoconferencing
    • PASCHALAKIS, S. AND BOBER, M. 2004. Real-Time face detection and tracking for mobile videoconferencing. Real-Time Imaging 10, 2, 81-94.
    • (2004) Real-Time Imaging , vol.10 , Issue.2 , pp. 81-94
    • Paschalakis, S.1    Bober, M.2
  • 126
    • 0031193007 scopus 로고    scopus 로고
    • Visual interpretation of hand gestures for human-computer interaction: A review
    • PAVLOVIE, V. I., SHARMA, R., AND HUANG, T. 1997. Visual interpretation of hand gestures for human-computer interaction: A review. IEEE Trans. Pattern Anal. Mach. Intell. 19, 7, 677-695.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.7 , pp. 677-695
    • Pavlovie, V.I.1    Sharma, R.2    Huang, T.3
  • 130
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • ROSS, D., LIM, J., LIN, R., AND YANG, M. 2008. Incremental learning for robust visual tracking. Int. J. Comput. Vision 77, 1-3, 125-141.
    • (2008) Int. J. Comput. Vision , vol.77 , Issue.1-3 , pp. 125-141
    • Ross, D.1    Lim, J.2    Lin, R.3    Yang, M.4
  • 132
    • 0025238196 scopus 로고
    • Feature point correspondence in the presence of occlusion
    • SALARI, V. AND SETHI, I. K. 1990. Feature point correspondence in the presence of occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 1, 87-91.
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , Issue.1 , pp. 87-91
    • Salari, V.1    Sethi, I.K.2
  • 134
    • 0030216923 scopus 로고    scopus 로고
    • Compact representations of videos through dominant and multiple motion estimation
    • SAWHNEY, H. AND AYER, S. 1996. Compact representations of videos through dominant and multiple motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 814-830.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , pp. 814-830
    • Sawhney, H.1    Ayer, S.2
  • 135
    • 0042529189 scopus 로고    scopus 로고
    • Active blobs: Region-based, deformable appearance models
    • SCLAROFF, S. AND ISIDORO, J. 2003. Active blobs: Region-based, deformable appearance models. Comput. Vision Image Understand. 89, 2, 197-225.
    • (2003) Comput. Vision Image Understand. , vol.89 , Issue.2 , pp. 197-225
    • Sclaroff, S.1    Isidoro, J.2
  • 136
    • 0023112450 scopus 로고
    • Finding trajectories of feature points in monocular image sequence
    • SETHI, I. K. AND JAIN, R. 1987. Finding trajectories of feature points in monocular image sequence. IEEE Trans. Pattern Anal. Mach. Intell. 9, 1, 56-73.
    • (1987) IEEE Trans. Pattern Anal. Mach. Intell. , vol.9 , Issue.1 , pp. 56-73
    • Sethi, I.K.1    Jain, R.2
  • 138
    • 34247329358 scopus 로고    scopus 로고
    • Fast global kernel density mode seeking: Applications to localization and tracking
    • SHEN, C., BROOKS, M. J., AND VAN DEN HENGEL, A. 2007. Fast global kernel density mode seeking: Applications to localization and tracking. IEEE Trans. Image Process. 16, 5, 1457-1469.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.5 , pp. 1457-1469
    • Shen, C.1    Brooks, M.J.2    Van Den Hengel, A.3
  • 141
    • 0031075691 scopus 로고    scopus 로고
    • Thempeg-4 video standard verification model
    • SIKORA, T. 1997. Thempeg-4 video standard verification model. IEEE Trans. Circuits Syst. Video Technol. 7, 1, 19-31.
    • (1997) IEEE Trans. Circuits Syst. Video Technol. , vol.7 , Issue.1 , pp. 19-31
    • Sikora, T.1
  • 144
    • 33846286774 scopus 로고    scopus 로고
    • Weighted and robust incremental method for subspace learning
    • SKOCAJ, D. AND LEONARDIS, A. 2003. Weighted and robust incremental method for subspace learning. Pattern Recog. 40, 5, 1556-1569.
    • (2003) Pattern Recog. , vol.40 , Issue.5 , pp. 1556-1569
    • Skocaj, D.1    Leonardis, A.2
  • 145
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-Time tracking
    • STAUFFER, C. AND GRIMSON, W. 2000. Learning patterns of activity using real-Time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8, 747-757.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.2
  • 148
    • 1342265650 scopus 로고    scopus 로고
    • Real-Time image tracking for automatic traffic monitoring and enforcement application
    • TAI, J., TSANG, S., LIN, C., AND SONG, K. 2004. Real-Time image tracking for automatic traffic monitoring and enforcement application. Image Vision Comput. 22, 6, 485-501.
    • (2004) Image Vision Comput. , vol.22 , Issue.6 , pp. 485-501
    • Tai, J.1    Tsang, S.2    Lin, C.3    Song, K.4
  • 150
    • 50549097421 scopus 로고    scopus 로고
    • Probabilistic object tracking with dynamic attributed relational feature graph
    • TANG, F. AND TAO, H. 2008. Probabilistic object tracking with dynamic attributed relational feature graph. IEEE Trans. Circuits Syst. Video Technol. 18, 8, 1064-1074.
    • (2008) IEEE Trans. Circuits Syst. Video Technol. , vol.18 , Issue.8 , pp. 1064-1074
    • Tang, F.1    Tao, H.2
  • 152
    • 0029701326 scopus 로고    scopus 로고
    • Incremental focus of attention for robust visual tracking
    • TOYAMA, K. AND HAGER, G. D. 1996. Incremental focus of attention for robust visual tracking. Int. J. Comput. Vision.
    • (1996) Int. J. Comput. Vision
    • Toyama, K.1    Hager, G.D.2
  • 156
    • 77949665332 scopus 로고    scopus 로고
    • Pf-mt with an interpolation effective basis for tracking local contour deformations
    • VASWANI, N., RATHI, Y., YEZZI, A., AND TANNENBAUM, A. 2008. Pf-mt with an interpolation effective basis for tracking local contour deformations. IEEE Trans. Image Process. 19, 4, 841-857.
    • (2008) IEEE Trans. Image Process. , vol.19 , Issue.4 , pp. 841-857
    • Vaswani, N.1    Rathi, Y.2    Yezzi, A.3    Tannenbaum, A.4
  • 157
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-Time object detection
    • VIOLA, P. AND JONES, M. 2002. Robust real-Time object detection. Int. J. Comput. Vision 57, 2, 137-154.
    • (2002) Int. J. Comput. Vision , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.2
  • 161
    • 39549089736 scopus 로고    scopus 로고
    • Integrating color and shape-Texture features for adaptive real-Time object tracking
    • WANG, J. AND YAGI, Y. 2008. Integrating color and shape-Texture features for adaptive real-Time object tracking. IEEE Trans. Image Process. 17, 2, 235-240.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.2 , pp. 235-240
    • Wang, J.1    Yagi, Y.2
  • 162
    • 84866604392 scopus 로고    scopus 로고
    • Object tracking via partial least squares analysis
    • WANG, Q.,CHEN, F.,XU, W., AND YANG,M. 2012. Object tracking via partial least squares analysis. IEEE Trans. Image Process. 21, 10, 4454-4465.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.10 , pp. 4454-4465
    • Wang, Q.1    Chen, F.2    Xu, W.3    Yang, M.4
  • 170
    • 84864888849 scopus 로고
    • Guided search 2.0: A revised model of visual search
    • WOLFE, J.M. 1994. Guided search 2.0: A revised model of visual search. Psychonomic Bull. Rev. 1, 2, 202-238.
    • (1994) Psychonomic Bull. Rev. , vol.1 , Issue.2 , pp. 202-238
    • Wolfe, J.M.1
  • 171
    • 84870239450 scopus 로고    scopus 로고
    • A new robust visual tracking algorithm based on transfer adaptive boosting
    • WU, S., ZHU, Y., AND ZHANG, Q. 2012. A new robust visual tracking algorithm based on transfer adaptive boosting. Math. Methods Appl. Sci. 35, 17, 2133-2140.
    • (2012) Math. Methods Appl. Sci. , vol.35 , Issue.17 , pp. 2133-2140
    • Wu, S.1    Zhu, Y.2    Zhang, Q.3
  • 181
    • 67649881131 scopus 로고    scopus 로고
    • Tracking nonstationary visual appearances by data-driven adaptation
    • YANG, M., FAN, Z., FAN, J., AND WU, Y. 2009. Tracking nonstationary visual appearances by data-driven adaptation. IEEE Trans. Image Process. 18, 7, 1633-1644.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.7 , pp. 1633-1644
    • Yang, M.1    Fan, Z.2    Fan, J.3    Wu, Y.4
  • 185
  • 189
    • 68949159826 scopus 로고    scopus 로고
    • Graph-based transductive learning for robust visual tracking
    • ZHA, Y., YANG, Y., AND BI, D. 2010. Graph-based transductive learning for robust visual tracking. Pattern Recog. 43, 187-196.
    • (2010) Pattern Recog. , vol.43 , pp. 187-196
    • Zha, Y.1    Yang, Y.2    Bi, D.3
  • 191
    • 84885376790 scopus 로고    scopus 로고
    • Real-Time visual tracking via online weighted multiple instance learning
    • ZHANG, K. AND SONG, H. 2012. Real-Time visual tracking via online weighted multiple instance learning. Pattern Recog.
    • (2012) Pattern Recog
    • Zhang, K.1    Song, H.2
  • 195
    • 73849098311 scopus 로고    scopus 로고
    • Differential earth mover's distance with its applications to visual tracking
    • ZHAO, Q., YANG, Z., AND TAO, H. 2010. Differential earth mover's distance with its applications to visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2, 274-287.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.2 , pp. 274-287
    • Zhao, Q.1    Yang, Z.2    Tao, H.3
  • 198
    • 7444266896 scopus 로고    scopus 로고
    • Visual tracking and recognition using appearanceadaptive models in particle filters
    • ZHOU, S. K., CHELLAPPA, R., AND MOGHADDAM, B. 2004. Visual tracking and recognition using appearanceadaptive models in particle filters. IEEE Trans. Image Process. 13, 1491-1506.
    • (2004) IEEE Trans. Image Process. , vol.13 , pp. 1491-1506
    • Zhou, S.K.1    Chellappa, R.2    Moghaddam, B.3
  • 200
    • 33745456231 scopus 로고    scopus 로고
    • Tech. rep. Computer Sciences, University of Wisconsin-Madison
    • ZHU, X. 2005. Semi-supervised learning literature survey. Tech. rep. Computer Sciences, University of Wisconsin-Madison.
    • (2005) Semi-Supervised Learning Literature Survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.