메뉴 건너뛰기




Volumn 65, Issue 10, 1999, Pages 1187-1194

Remotely sensed change detection based on artificial neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0032874004     PISSN: 00991112     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (117)

References (36)
  • 2
  • 3
    • 0028731452 scopus 로고
    • Principal component analysis for change detection on polarimetric multitemporal SAR data
    • Pasadena, California
    • Baronti, S., R. Carla, S. Sigimondi, and L. Alparone, 1994. Principal component analysis for change detection on polarimetric multitemporal SAR data, Proc. IEEE/IGARSS '94, Pasadena, California, pp. 2152-2154.
    • (1994) Proc. IEEE/IGARSS '94 , pp. 2152-2154
    • Baronti, S.1    Carla, R.2    Sigimondi, S.3    Alparone, L.4
  • 4
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Benediktsson, J.A., P.H. Swain, and O.K. Ersoy, 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data, IEEE Trans. on Geoscience and Remote Sensing, 28:540-551.
    • (1990) IEEE Trans. on Geoscience and Remote Sensing , vol.28 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 6
    • 0031186955 scopus 로고    scopus 로고
    • An interactive technique for the detection of land-cover transitions in multitemporal remote-sensing images
    • Bruzzone, L., and S.B. Serpico, 1997. An interactive technique for the detection of land-cover transitions in multitemporal remote-sensing images, IEEE Trans. on Geoscience and Remote Sensing, 35(4):858-867.
    • (1997) IEEE Trans. on Geoscience and Remote Sensing , vol.35 , Issue.4 , pp. 858-867
    • Bruzzone, L.1    Serpico, S.B.2
  • 7
    • 0019229529 scopus 로고
    • Monitoring land-cover change by principal component analysis of multitemporal landsat data
    • Byrne, G.F., P.F. Crapper, and K.K. Mayo, 1980. Monitoring land-cover change by principal component analysis of multitemporal landsat data, Remote Sensing of Environment, 10:175-184.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 175-184
    • Byrne, G.F.1    Crapper, P.F.2    Mayo, K.K.3
  • 9
    • 0027525734 scopus 로고
    • Artificial neural networks for land-cover classification and mapping
    • Civco, D.L., 1993. Artificial neural networks for land-cover classification and mapping, International Journal of Geographic Information Systems, 7(2):173-186.
    • (1993) International Journal of Geographic Information Systems , vol.7 , Issue.2 , pp. 173-186
    • Civco, D.L.1
  • 10
    • 0029666685 scopus 로고    scopus 로고
    • An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data
    • Collins, J.B., and C.E. Woodcock, 1996. An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data, Remote Sensing of Environment, 56:66-77.
    • (1996) Remote Sensing of Environment , vol.56 , pp. 66-77
    • Collins, J.B.1    Woodcock, C.E.2
  • 11
    • 0030472333 scopus 로고    scopus 로고
    • Digital change detection in forest ecosystems with remote sensing imagery
    • Coppin, P.R., and M.E. Bauer, 1996. Digital change detection in forest ecosystems with remote sensing imagery, Remote Sensing Reviews, 13:207-234.
    • (1996) Remote Sensing Reviews , vol.13 , pp. 207-234
    • Coppin, P.R.1    Bauer, M.E.2
  • 12
    • 0032166282 scopus 로고    scopus 로고
    • The effects of image misregistration on the accuracy of remotely sensed change detection
    • Dai, X.L., and S. Khorram, 1998a. The effects of image misregistration on the accuracy of remotely sensed change detection, IEEE Trans. on Geoscience and Remote Sensing, 36(5):1566-1577.
    • (1998) IEEE Trans. on Geoscience and Remote Sensing , vol.36 , Issue.5 , pp. 1566-1577
    • Dai, X.L.1    Khorram, S.2
  • 13
    • 0031642808 scopus 로고    scopus 로고
    • Requirements and techniques for an automated change detection system
    • Seattle, Washington, July
    • _, 1998b. Requirements and techniques for an automated change detection system, Proc.IEEE/IGARSS'98, Seattle, Washington, July, pp. 2752-2754.
    • (1998) Proc.IEEE/IGARSS'98 , pp. 2752-2754
  • 14
    • 0344629946 scopus 로고    scopus 로고
    • A neural network approach to data fusion in remote sensing
    • (CD-ROM), Tampa, Florida
    • Dai, X.L., S. Khorram, and H.A. Karimi, 1998. A neural network approach to data fusion in remote sensing, Proc. ASPRS Annual Convention (CD-ROM), Tampa, Florida, pp. 191-198.
    • (1998) Proc. ASPRS Annual Convention , pp. 191-198
    • Dai, X.L.1    Khorram, S.2    Karimi, H.A.3
  • 15
    • 0027595168 scopus 로고
    • Classification of land cover using optimized neural nets on SPOT data
    • Dreye, P., 1993. Classification of land cover using optimized neural nets on SPOT data, Photogrammetric Engineering & Remote Sensing, 59(5):617-621.
    • (1993) Photogrammetric Engineering & Remote Sensing , vol.59 , Issue.5 , pp. 617-621
    • Dreye, P.1
  • 16
    • 0030104285 scopus 로고    scopus 로고
    • Remote sensing of forest change using artificial neural networks
    • Gopal, S., and C. Woodcock, 1996. Remote sensing of forest change using artificial neural networks, IEEE Trans. on Geoscience and Remote Sensing, 34(2):398-404.
    • (1996) IEEE Trans. on Geoscience and Remote Sensing , vol.34 , Issue.2 , pp. 398-404
    • Gopal, S.1    Woodcock, C.2
  • 18
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • Heermann, P.D., and N. Khazenie, 1992. Classification of multispectral remote sensing data using a back-propagation neural network, IEEE Trans. on Geoscience and Remote Sensing, 30:81-88.
    • (1992) IEEE Trans. on Geoscience and Remote Sensing , vol.30 , pp. 81-88
    • Heermann, P.D.1    Khazenie, N.2
  • 19
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaption
    • Jacobs, R.A., 1988. Increased rates of convergence through learning rate adaption, Neural Networks, 1(4):295-308.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-308
    • Jacobs, R.A.1
  • 22
    • 0029729078 scopus 로고    scopus 로고
    • The surface temperature-vegetation index space for land cover and land cover change analysis
    • Lambin, E.F., and D. Ehrlich, 1996. The surface temperature-vegetation index space for land cover and land cover change analysis, Int. J. of Remote Sensing, 17(3):463-487.
    • (1996) Int. J. of Remote Sensing , vol.17 , Issue.3 , pp. 463-487
    • Lambin, E.F.1    Ehrlich, D.2
  • 23
    • 0000534571 scopus 로고
    • Classification of remotely-sensed image data using artificial neural networks
    • Liu, Z.K., and J.Y. Xiao, 1991. Classification of remotely-sensed image data using artificial neural networks, Int. J. of Remote Sensing, 12(11):2433-2438.
    • (1991) Int. J. of Remote Sensing , vol.12 , Issue.11 , pp. 2433-2438
    • Liu, Z.K.1    Xiao, J.Y.2
  • 26
    • 0029543410 scopus 로고
    • Neural network classification of remote-sensing data
    • Miller, D.M., E.J. Kaminsky, and S. Rana, 1995. Neural network classification of remote-sensing data, Computers & Geosciences, 21(3):377-386.
    • (1995) Computers & Geosciences , vol.21 , Issue.3 , pp. 377-386
    • Miller, D.M.1    Kaminsky, E.J.2    Rana, S.3
  • 28
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery
    • Paola, J.D., and R.A. Schowengerdt, 1995a. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery, Int. J. of Remote Sensing, 16(16):3033-3056.
    • (1995) Int. J. of Remote Sensing , vol.16 , Issue.16 , pp. 3033-3056
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 29
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • _, 1995b. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification, IEEE Trans. on Geoscience and Remote Sensing, 33(4):981-996.
    • (1995) IEEE Trans. on Geoscience and Remote Sensing , vol.33 , Issue.4 , pp. 981-996
  • 33
    • 0024855524 scopus 로고
    • Digital change detection techniques using remotely-sensed data
    • Singh, A., 1989. Digital change detection techniques using remotely-sensed data, Int. J. of Remote Sensing, 10(6):989-1003.
    • (1989) Int. J. of Remote Sensing , vol.10 , Issue.6 , pp. 989-1003
    • Singh, A.1
  • 36
    • 0025925633 scopus 로고
    • Change detection in SAR imagery
    • White, R.G., 1991. Change detection in SAR imagery, Int. J. of Remote Sensing, 12(2):339-360.
    • (1991) Int. J. of Remote Sensing , vol.12 , Issue.2 , pp. 339-360
    • White, R.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.