메뉴 건너뛰기




Volumn 102, Issue P1, 2014, Pages 192-206

Bi-level multi-source learning for heterogeneous block-wise missing data

Author keywords

Alzheimer's disease; Block wise missing data; Multi modal fusion; Multi source; Optimization

Indexed keywords

FLUORODEOXYGLUCOSE;

EID: 84908378904     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2013.08.015     Document Type: Review
Times cited : (77)

References (44)
  • 4
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck A., Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2:183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 5
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel P.J., Ritov Y., Tsybakov A.B. Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 2009, 37:1705-1732.
    • (2009) Ann. Stat. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 6
    • 79959342076 scopus 로고    scopus 로고
    • Penalized methods for bi-level variable selection
    • Breheny P., Huang J. Penalized methods for bi-level variable selection. Statistics and its interface 2009, 2:369-380.
    • (2009) Statistics and its interface , vol.2 , pp. 369-380
    • Breheny, P.1    Huang, J.2
  • 8
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
    • Calhoun V.D., Liu J., Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 2009, 45:S163.
    • (2009) NeuroImage , vol.45 , pp. S163
    • Calhoun, V.D.1    Liu, J.2    Adali, T.3
  • 10
  • 13
    • 44249088535 scopus 로고    scopus 로고
    • Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
    • Fan Y., Resnick S.M., Wu X., Davatzikos C. Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study. NeuroImage 2008, 41:277-285.
    • (2008) NeuroImage , vol.41 , pp. 277-285
    • Fan, Y.1    Resnick, S.M.2    Wu, X.3    Davatzikos, C.4
  • 15
    • 77953694851 scopus 로고    scopus 로고
    • A note on the group Lasso and a sparse group lasso
    • (preprint arXiv:1001.0736)
    • Friedman J., Hastie T., Tibshirani R. A note on the group Lasso and a sparse group lasso. Arxiv 2010, (preprint arXiv:1001.0736).
    • (2010) Arxiv
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with a certain family of nonconvex penalties and DC programming
    • Gasso G., Rakotomamonjy A., Canu S. Recovering sparse signals with a certain family of nonconvex penalties and DC programming. Signal Processing, IEEE Transactions on 2009, 57:4686-4698.
    • (2009) Signal Processing, IEEE Transactions on , vol.57 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 17
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • Hinrichs C., Singh V., Xu G., Johnson S.C. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage 2011, 55:574-589.
    • (2011) NeuroImage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 23
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Mazumder R., Hastie T., Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 2010, 11:2287-2322.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 26
    • 0000939953 scopus 로고    scopus 로고
    • Convex analysis approach to dc programming: theory, algorithms and applications
    • Tao P.D., An L.T.H. Convex analysis approach to dc programming: theory, algorithms and applications. Acta Math. Vietnam 1997, 22:289-355.
    • (1997) Acta Math. Vietnam , vol.22 , pp. 289-355
    • Tao, P.D.1    An, L.T.H.2
  • 28
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya O.G., Dolinski K., Owen A.B., Altman R.B., Botstein D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. 2003, 100:8348-8353.
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , pp. 8348-8353
    • Troyanskaya, O.G.1    Dolinski, K.2    Owen, A.B.3    Altman, R.B.4    Botstein, D.5
  • 30
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002, 15:273-289.
    • (2002) NeuroImage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6    Mazoyer, B.7    Joliot, M.8
  • 34
    • 84863509119 scopus 로고    scopus 로고
    • Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
    • Wang H., Nie F., Huang H., Risacher S.L., Saykin A.J., Shen L. Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics 2012, 28:i127-i136.
    • (2012) Bioinformatics , vol.28 , pp. i127-i136
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.L.4    Saykin, A.J.5    Shen, L.6
  • 40
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat Methodol.) 2006, 68:49-67.
    • (2006) J. R. Stat. Soc. Ser. B (Stat Methodol.) , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 41
    • 84861187815 scopus 로고    scopus 로고
    • Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
    • Yuan L., Wang Y., Thompson P.M., Narayan V.A., Ye J. Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 2012, 61:622-632.
    • (2012) NeuroImage , vol.61 , pp. 622-632
    • Yuan, L.1    Wang, Y.2    Thompson, P.M.3    Narayan, V.A.4    Ye, J.5
  • 42
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • Zhang D., Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 2012, 59:895-907.
    • (2012) NeuroImage , vol.59 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 43
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang D., Wang Y., Zhou L., Yuan H., Shen D. Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage 2011, 55:856-867.
    • (2011) NeuroImage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 44
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao P., Yu B. On model selection consistency of Lasso. J. Mach. Learn. Res. 2006, 7:2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.