메뉴 건너뛰기




Volumn 187, Issue 1, 2015, Pages 95-112

Cross-validation for selecting a model selection procedure

Author keywords

Adaptive procedure selection; Cross validation; Cross validation paradox; Data splitting ratio; Information criterion; LASSO; MCP; SCAD

Indexed keywords

ADAPTIVE PROCEDURE; CROSS VALIDATION; DATA SPLITTING; INFORMATION CRITERION; LASSO; MCP; SCAD;

EID: 84929627804     PISSN: 03044076     EISSN: 18726895     Source Type: Journal    
DOI: 10.1016/j.jeconom.2015.02.006     Document Type: Article
Times cited : (314)

References (50)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B.N. Petrov, F. Csaki, Akademia Kiado Budapest
    • H. Akaike Information theory and an extension of the maximum likelihood principle B.N. Petrov, F. Csaki, Proceedings of the 2nd International Symposium on Information Theory 1973 Akademia Kiado Budapest 267 281
    • (1973) Proceedings of the 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • D.M. Allen The relationship between variable selection and data augmentation and a method for prediction Technometrics 16 1974 125 127
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 3
    • 0001338126 scopus 로고
    • CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors
    • CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors J. Econometrics 47 1991 359 377
    • (1991) J. Econometrics , vol.47 , pp. 359-377
    • Andrews, D.W.K.1
  • 4
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • S. Arlot, and A. Celisse A survey of cross-validation procedures for model selection Stat. Surv. 4 2010 40 79
    • (2010) Stat. Surv. , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 5
    • 0000404653 scopus 로고
    • Approximation of density functions by sequences of exponential families
    • A.R. Barron, and C. Sheu Approximation of density functions by sequences of exponential families Ann. Statist. 19 1991 1347 1369
    • (1991) Ann. Statist. , vol.19 , pp. 1347-1369
    • Barron, A.R.1    Sheu, C.2
  • 8
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression. The X-random case
    • L. Breiman, and P. Spector Submodel selection and evaluation in regression. The X-random case Internat. Statist. Rev. 60 1992 291 319
    • (1992) Internat. Statist. Rev. , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 9
    • 0000354976 scopus 로고
    • A Comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
    • P. Burman A Comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods Biometricka 76 1989 503 514
    • (1989) Biometricka , vol.76 , pp. 503-514
    • Burman, P.1
  • 10
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan, and R. Li Variable selection via nonconcave penalized likelihood and its oracle properties J. Amer. Statist. Assoc. 96 2001 1348 1361
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1361
    • Fan, J.1    Li, R.2
  • 11
    • 80051767239 scopus 로고    scopus 로고
    • Sparse high-dimensional models in economics
    • J. Fan, J. Lv, and L. Qi Sparse high-dimensional models in economics Annu. Rev. Econ. 3 2011 291 317
    • (2011) Annu. Rev. Econ. , vol.3 , pp. 291-317
    • Fan, J.1    Lv, J.2    Qi, L.3
  • 12
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • D.P. Foster, and E.I. George The risk inflation criterion for multiple regression Ann. Statist. 22 1994 1947 1975
    • (1994) Ann. Statist. , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 13
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • S. Geisser The predictive sample reuse method with applications J. Amer. Statist. Assoc. 70 1975 320 328
    • (1975) J. Amer. Statist. Assoc. , vol.70 , pp. 320-328
    • Geisser, S.1
  • 14
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical bayes variable selection
    • E.I. George, and D.P. Foster Calibration and empirical bayes variable selection Biometrika 87 2000 731 747
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 18
    • 49749104267 scopus 로고    scopus 로고
    • Accumulated prediction errors, information criteria and optimal forecasting for autoregressive time series
    • C.-K. Ing Accumulated prediction errors, information criteria and optimal forecasting for autoregressive time series Ann. Statist. 35 2007 1238 1277
    • (2007) Ann. Statist. , vol.35 , pp. 1238-1277
    • Ing, C.-K.1
  • 20
    • 84899084283 scopus 로고    scopus 로고
    • Cross-validation pitfalls when selecting and assessing regression and classification models
    • D. Krstajic, L.J. Buturovic, D.E. Leahy, and S. Thomas Cross-validation pitfalls when selecting and assessing regression and classification models J. Cheminformatics 6 2014 10 http://www.jcheminf.com/content/6/1/10
    • (2014) J. Cheminformatics , vol.6 , pp. 10
    • Krstajic, D.1    Buturovic, L.J.2    Leahy, D.E.3    Thomas, S.4
  • 21
    • 0001462696 scopus 로고
    • CL, cross-validation and generalized cross-validation: Discrete index set
    • CL, cross-validation and generalized cross-validation: Discrete index set Ann. Statist. 15 1987 958 975
    • (1987) Ann. Statist. , vol.15 , pp. 958-975
    • Li, K.-C.1
  • 22
    • 84861191677 scopus 로고    scopus 로고
    • Parametric or nonparametric? A parametricness index for model selection
    • W. Liu, and Y. Yang Parametric or nonparametric? A parametricness index for model selection Ann. Statist. 39 2011 2074 2102
    • (2011) Ann. Statist. , vol.39 , pp. 2074-2102
    • Liu, W.1    Yang, Y.2
  • 23
    • 84929614062 scopus 로고    scopus 로고
    • (Ph.D. preliminary exam paper) School of Statistics, University of Minnesota
    • F. Lu Prediction error estimation by cross validation (Ph.D. preliminary exam paper) 2007 School of Statistics, University of Minnesota
    • (2007) Prediction Error Estimation by Cross Validation
    • Lu, F.1
  • 24
    • 84881561908 scopus 로고    scopus 로고
    • Variable selection in predictive regressions
    • first ed. North Holland
    • S. Ng Variable selection in predictive regressions first ed. Handbook of Economic Forecasting vol. 2B 2013 North Holland 753 789
    • (2013) Handbook of Economic Forecasting , vol.2 B , pp. 753-789
    • Ng, S.1
  • 25
    • 0001349324 scopus 로고
    • Asymptotic properties of criteria for selection of variables in multiple regression
    • R. Nishii Asymptotic properties of criteria for selection of variables in multiple regression Ann. Statist. 12 1984 758 765
    • (1984) Ann. Statist. , vol.12 , pp. 758-765
    • Nishii, R.1
  • 26
  • 27
    • 0001289292 scopus 로고
    • Cp-test for the orthogonal series estimation of regression
    • Cp-test for the orthogonal series estimation of regression Theory Probab. Appl. 35 1990 293 306
    • (1990) Theory Probab. Appl. , vol.35 , pp. 293-306
    • Polyak, B.T.1    Tsybakov, A.B.2
  • 28
    • 0000070978 scopus 로고
    • A strongly consistent procedure for model selection in a regression problem
    • C.R. Rao, and Y. Wu A strongly consistent procedure for model selection in a regression problem Biometrika 76 1989 369 374
    • (1989) Biometrika , vol.76 , pp. 369-374
    • Rao, C.R.1    Wu, Y.2
  • 29
    • 51249187914 scopus 로고
    • Lp (p > 2) spanned by sequences of independent random variables
    • Lp (p > 2) spanned by sequences of independent random variables Israel J. Math. 8 1970 273 303
    • (1970) Israel J. Math. , vol.8 , pp. 273-303
    • Rosenthal, H.P.1
  • 30
    • 84857824105 scopus 로고    scopus 로고
    • Minimax-optimal rates for sparse additive models over kernel classes via convex programming
    • G. Raskutti, M. Wainwright, and B. Yu Minimax-optimal rates for sparse additive models over kernel classes via convex programming J. Mach. Learn. Res. 13 2012 389 427
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 389-427
    • Raskutti, G.1    Wainwright, M.2    Yu, B.3
  • 31
    • 85015513108 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Ann. Statist. 6 1978 461 464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 0012856304 scopus 로고
    • Asymptotic mean efficiency of a selection of regression variables
    • R. Shibata Asymptotic mean efficiency of a selection of regression variables Ann. Inst. Statist. Math. 35 1983 415 423
    • (1983) Ann. Inst. Statist. Math. , vol.35 , pp. 415-423
    • Shibata, R.1
  • 34
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • J. Shao Linear model selection by cross-validation J. Amer. Statist. Assoc. 88 1993 486 494
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 35
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection (with discussion)
    • J. Shao An asymptotic theory for linear model selection (with discussion) Statist. Sinica 7 1997 221 242
    • (1997) Statist. Sinica , vol.7 , pp. 221-242
    • Shao, J.1
  • 36
    • 0002176208 scopus 로고
    • Model selection and prediction: Normal regression
    • T.P. Speed, and B. Yu Model selection and prediction: Normal regression Ann. Inst. Statist. Math. 45 1993 35 54
    • (1993) Ann. Inst. Statist. Math. , vol.45 , pp. 35-54
    • Speed, T.P.1    Yu, B.2
  • 37
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical predictions
    • M. Stone Cross-validation choice and assessment of statistical predictions J. R. Stat. Soc. Ser. B 36 1974 111 147
    • (1974) J. R. Stat. Soc. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 38
    • 0017336301 scopus 로고
    • Asymptotics for and against cross-validation
    • M. Stone Asymptotics for and against cross-validation Biometrika 64 1977 29 35
    • (1977) Biometrika , vol.64 , pp. 29-35
    • Stone, M.1
  • 39
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani Regression shrinkage and selection via the LASSO J. R. Stat. Soc. Ser. B 58 1996 267 288
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 40
  • 41
    • 84861190153 scopus 로고    scopus 로고
    • Catching up faster by switching sooner: A predictive approach to adaptive estimation with an application to the AIC-BIC dilemma
    • T. van Erven, P. Grünwald, and S. de Rooij Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma J. R. Stat. Soc. Ser. B 74 2012 361 417
    • (2012) J. R. Stat. Soc. Ser. B , vol.74 , pp. 361-417
    • Van Erven, T.1    Grünwald, P.2    De Rooij, S.3
  • 43
    • 1542573460 scopus 로고    scopus 로고
    • Adaptive regression by mixing
    • Y. Yang Adaptive regression by mixing J. Amer. Statist. Assoc. 96 2001 574 588
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 574-588
    • Yang, Y.1
  • 44
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation
    • Y. Yang Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation Biometrika 92 2005 937 950
    • (2005) Biometrika , vol.92 , pp. 937-950
    • Yang, Y.1
  • 45
    • 33746167868 scopus 로고    scopus 로고
    • Comparing learning methods for classification
    • Y. Yang Comparing learning methods for classification Statist. Sinica 16 2006 635 657
    • (2006) Statist. Sinica , vol.16 , pp. 635-657
    • Yang, Y.1
  • 46
    • 33947417700 scopus 로고    scopus 로고
    • Prediction/estimation with simple linear model: Is it really that simple?
    • Y. Yang Prediction/estimation with simple linear model: Is it really that simple? Econometric Theory 23 2007 1 36
    • (2007) Econometric Theory , vol.23 , pp. 1-36
    • Yang, Y.1
  • 47
    • 39649100346 scopus 로고    scopus 로고
    • Consistency of cross validation for comparing regression procedures
    • Y. Yang Consistency of cross validation for comparing regression procedures Ann. Statist. 35 2007 2450 2473
    • (2007) Ann. Statist. , vol.35 , pp. 2450-2473
    • Yang, Y.1
  • 48
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C.H. Zhang Nearly unbiased variable selection under minimax concave penalty Ann. Statist. 38 2010 894 942
    • (2010) Ann. Statist. , vol.38 , pp. 894-942
    • Zhang, C.H.1
  • 49
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • P. Zhang Model selection via multifold cross validation Ann. Statist. 21 1993 299 313
    • (1993) Ann. Statist. , vol.21 , pp. 299-313
    • Zhang, P.1
  • 50
    • 67349117296 scopus 로고    scopus 로고
    • Model selection: A Lagrange optimization approach
    • Y. Zhang Model selection: A Lagrange optimization approach J. Statist. Plann. Inference 139 2009 3142 3159
    • (2009) J. Statist. Plann. Inference , vol.139 , pp. 3142-3159
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.