메뉴 건너뛰기




Volumn 276, Issue , 2015, Pages 213-221

Experimental investigation and development of a SVM model for hydrogenation reaction of carbon monoxide in presence of Co-Mo/Al2O3 catalyst

Author keywords

Catalyst; Fischer Tropsch synthesis; Mathematical model; Support vector machine

Indexed keywords

AUTOCLAVES; CARBON MONOXIDE; CATALYSTS; ESTIMATION; FUNCTIONS; HYDROGENATION; MATHEMATICAL MODELS; REACTION KINETICS; SUPPORT VECTOR MACHINES;

EID: 84929493827     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2015.04.019     Document Type: Article
Times cited : (17)

References (45)
  • 1
    • 77955019746 scopus 로고
    • Production of synthetic natural gas (SNG) from coal and dry biomass - a technology review from 1950 to 2009
    • Kopyscinski J., Schildhauer T.J., Biollaz S.M.A. Production of synthetic natural gas (SNG) from coal and dry biomass - a technology review from 1950 to 2009. Fuel 1950, 89(2010):1763-1783.
    • (1950) Fuel , vol.89 , Issue.2010 , pp. 1763-1783
    • Kopyscinski, J.1    Schildhauer, T.J.2    Biollaz, S.M.A.3
  • 2
    • 2342565501 scopus 로고    scopus 로고
    • Steam reforming, ATR, partial oxidation: catalysts and reaction engineering
    • John Wiley, London, Hand Book of Fuel Cells-Fundamentals, Technology and Applications
    • Rostrup-Nielsen J., Aasberg-Petersen K. Steam reforming, ATR, partial oxidation: catalysts and reaction engineering. Vol. 3: Fuel Cell Technology and Applications 2003, John Wiley, London.
    • (2003) Fuel Cell Technology and Applications , vol.3
    • Rostrup-Nielsen, J.1    Aasberg-Petersen, K.2
  • 3
    • 33745684848 scopus 로고    scopus 로고
    • Temperature-staged methanation: an alternative method to purify hydrogen-rich fuel gas for PEFC
    • Xu G., Chen X., Zhang Z.-G. Temperature-staged methanation: an alternative method to purify hydrogen-rich fuel gas for PEFC. Chem. Eng. J. 2006, 121:97-107.
    • (2006) Chem. Eng. J. , vol.121 , pp. 97-107
    • Xu, G.1    Chen, X.2    Zhang, Z.-G.3
  • 4
    • 61949344506 scopus 로고    scopus 로고
    • Employing catalyst fluidization to enable carbon management in the synthetic natural gas production from biomass
    • Kopyscinski J., Schildhauer T.J., Biollaz S.M.A. Employing catalyst fluidization to enable carbon management in the synthetic natural gas production from biomass. Chem. Eng. Technol. 2009, 32:343-347.
    • (2009) Chem. Eng. Technol. , vol.32 , pp. 343-347
    • Kopyscinski, J.1    Schildhauer, T.J.2    Biollaz, S.M.A.3
  • 5
    • 27744503369 scopus 로고    scopus 로고
    • Highly selective methanation by the use of a microchannel reactor
    • Görke O., Pfeifer P., Schubert K. Highly selective methanation by the use of a microchannel reactor. Catal. Today 2005, 110:132-139.
    • (2005) Catal. Today , vol.110 , pp. 132-139
    • Görke, O.1    Pfeifer, P.2    Schubert, K.3
  • 7
    • 42449088048 scopus 로고    scopus 로고
    • KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Stockholm, Sweden
    • Lögdberg S. Development of Fischer-Tropsch Catalysis for Gasified Biomass 2007, KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Stockholm, Sweden.
    • (2007) Development of Fischer-Tropsch Catalysis for Gasified Biomass
    • Lögdberg, S.1
  • 8
    • 84866512371 scopus 로고    scopus 로고
    • Evaluation of maximum gasoline production of Fischer-Tropsch synthesis reactions in GTL technology: a discretized approach
    • Arabpour M., Rahimpour M.R., Iranshahi D., Raeissi S. Evaluation of maximum gasoline production of Fischer-Tropsch synthesis reactions in GTL technology: a discretized approach. J. Nat. Gas Sci. Eng. 2012, 9:209-219.
    • (2012) J. Nat. Gas Sci. Eng. , vol.9 , pp. 209-219
    • Arabpour, M.1    Rahimpour, M.R.2    Iranshahi, D.3    Raeissi, S.4
  • 9
    • 84864219461 scopus 로고    scopus 로고
    • Nanofluid concept for enhancement of hydrogen utilization and gasoline production in fixed bed reactor Fischer-Tropsch synthesis of GTL (gas to liquid) technology
    • Jayhooni S., Mirvakili A., Rahimpour M. Nanofluid concept for enhancement of hydrogen utilization and gasoline production in fixed bed reactor Fischer-Tropsch synthesis of GTL (gas to liquid) technology. J. Nat. Gas Sci. Eng. 2012, 9:172-183.
    • (2012) J. Nat. Gas Sci. Eng. , vol.9 , pp. 172-183
    • Jayhooni, S.1    Mirvakili, A.2    Rahimpour, M.3
  • 10
    • 84860549309 scopus 로고    scopus 로고
    • 3 supported CoRu-based Fischer-Tropsch catalyst
    • 3 supported CoRu-based Fischer-Tropsch catalyst. Chem. Eng. J. 2012, 191:534-540.
    • (2012) Chem. Eng. J. , vol.191 , pp. 534-540
    • Ma, C.1    Yao, N.2    Han, Q.3    Li, X.4
  • 12
    • 0019103104 scopus 로고
    • The catalytic hydrogenation of carbon monoxide. The formation of C1 hydrocarbons
    • Somorjai G.A. The catalytic hydrogenation of carbon monoxide. The formation of C1 hydrocarbons. Catal. Rev. 1981, 23:189-202.
    • (1981) Catal. Rev. , vol.23 , pp. 189-202
    • Somorjai, G.A.1
  • 14
    • 0026238556 scopus 로고
    • Carbon monoxide hydrogenation on cobalt/alumina and cobalt/NaX catalysts
    • Wang W.-J., Chen Y.-W. Carbon monoxide hydrogenation on cobalt/alumina and cobalt/NaX catalysts. Appl. Catal. 1991, 77:21-36.
    • (1991) Appl. Catal. , vol.77 , pp. 21-36
    • Wang, W.-J.1    Chen, Y.-W.2
  • 17
    • 0041605496 scopus 로고
    • Methanation over transition-metal catalysts. 4. Cobalt/alumina. Rate behavior and kinetic modeling
    • Agrawal P.K., Katzer J.R., Manogue W.H. Methanation over transition-metal catalysts. 4. Cobalt/alumina. Rate behavior and kinetic modeling. Ind. Eng. Chem. Fundam. 1982, 21:385-390.
    • (1982) Ind. Eng. Chem. Fundam. , vol.21 , pp. 385-390
    • Agrawal, P.K.1    Katzer, J.R.2    Manogue, W.H.3
  • 19
    • 84907668227 scopus 로고    scopus 로고
    • 2 supported bimetallic Ni-Ru particles: a good sulfur-tolerant catalyst for methanation reaction
    • 2 supported bimetallic Ni-Ru particles: a good sulfur-tolerant catalyst for methanation reaction. Chem. Eng. J. 2015, 260:1-10.
    • (2015) Chem. Eng. J. , vol.260 , pp. 1-10
    • Yuan, C.1    Yao, N.2    Wang, X.3    Wang, J.4    Lv, D.5    Li, X.6
  • 22
    • 77951142635 scopus 로고    scopus 로고
    • Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation
    • Kopyscinski J., Schildhauer T.J., Vogel F., Biollaz S.M.A., Wokaun A. Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. J. Catal. 2010, 271:262-279.
    • (2010) J. Catal. , vol.271 , pp. 262-279
    • Kopyscinski, J.1    Schildhauer, T.J.2    Vogel, F.3    Biollaz, S.M.A.4    Wokaun, A.5
  • 24
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 25
    • 0742304284 scopus 로고    scopus 로고
    • Support vector classification with parameter tuning assisted by agent-based technique
    • Kulkarni A., Jayaraman V.K., Kulkarni B.D. Support vector classification with parameter tuning assisted by agent-based technique. Comput. Chem. Eng. 2004, 28:311-318.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 311-318
    • Kulkarni, A.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 26
    • 40749135790 scopus 로고    scopus 로고
    • Predicting defect-prone software modules using support vector machines
    • Elish K.O., Elish M.O. Predicting defect-prone software modules using support vector machines. J. Syst. Softw. 2008, 81:649-660.
    • (2008) J. Syst. Softw. , vol.81 , pp. 649-660
    • Elish, K.O.1    Elish, M.O.2
  • 27
    • 84855174209 scopus 로고    scopus 로고
    • Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+water soluble organic promoters using Support Vector Machine algorithm
    • Eslamimanesh A., Gharagheizi F., Illbeigi M., Mohammadi A.H., Fazlali A., Richon D. Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+water soluble organic promoters using Support Vector Machine algorithm. Fluid Phase Equilib. 2012, 316:34-45.
    • (2012) Fluid Phase Equilib. , vol.316 , pp. 34-45
    • Eslamimanesh, A.1    Gharagheizi, F.2    Illbeigi, M.3    Mohammadi, A.H.4    Fazlali, A.5    Richon, D.6
  • 28
    • 79959480027 scopus 로고    scopus 로고
    • Support vector machine regression (LS-SVM)-an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    • Balabin R.M., Lomakina E.I. Support vector machine regression (LS-SVM)-an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?. PCCP 2011, 13:11710-11718.
    • (2011) PCCP , vol.13 , pp. 11710-11718
    • Balabin, R.M.1    Lomakina, E.I.2
  • 30
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9:293-300.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 32
    • 79956270845 scopus 로고    scopus 로고
    • Neural networks and support vector machine models applied to energy consumption optimization in semiautogeneous grinding
    • Curilem M., Acuña G., Cubillos F., Vyhmeister E. Neural networks and support vector machine models applied to energy consumption optimization in semiautogeneous grinding. Chem. Eng. Trans. 2011, 25:761-766.
    • (2011) Chem. Eng. Trans. , vol.25 , pp. 761-766
    • Curilem, M.1    Acuña, G.2    Cubillos, F.3    Vyhmeister, E.4
  • 33
    • 77955415283 scopus 로고    scopus 로고
    • Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM)
    • Terzic J., Nagarajah C., Alamgir M. Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM). Sens. Actuators, A 2010, 161:278-287.
    • (2010) Sens. Actuators, A , vol.161 , pp. 278-287
    • Terzic, J.1    Nagarajah, C.2    Alamgir, M.3
  • 34
    • 40649103591 scopus 로고    scopus 로고
    • Kernel-based online machine learning and support vector reduction
    • Agarwal S., Vijaya Saradhi V., Karnick H. Kernel-based online machine learning and support vector reduction. Neurocomputing 2008, 71:1230-1237.
    • (2008) Neurocomputing , vol.71 , pp. 1230-1237
    • Agarwal, S.1    Vijaya Saradhi, V.2    Karnick, H.3
  • 35
    • 84868618603 scopus 로고    scopus 로고
    • Sphere support vector machines for large classification tasks
    • Strack R., Kecman V., Strack B., Li Q. Sphere support vector machines for large classification tasks. Neurocomputing 2013, 101:59-67.
    • (2013) Neurocomputing , vol.101 , pp. 59-67
    • Strack, R.1    Kecman, V.2    Strack, B.3    Li, Q.4
  • 36
    • 37349046499 scopus 로고    scopus 로고
    • An algorithm to cluster data for efficient classification of support vector machines
    • Li D.-C., Fang Y.-H. An algorithm to cluster data for efficient classification of support vector machines. Expert Syst. Appl. 2008, 34:2013-2018.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2013-2018
    • Li, D.-C.1    Fang, Y.-H.2
  • 37
    • 28844500372 scopus 로고    scopus 로고
    • Application of support vector machine (SVM) for prediction toxic activity of different data sets
    • Zhao C., Zhang H., Zhang X., Liu M., Hu Z., Fan B. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology 2006, 217:105-119.
    • (2006) Toxicology , vol.217 , pp. 105-119
    • Zhao, C.1    Zhang, H.2    Zhang, X.3    Liu, M.4    Hu, Z.5    Fan, B.6
  • 38
    • 45049083533 scopus 로고    scopus 로고
    • A new training method for support vector machines: clustering k-NN support vector machines
    • Çomak E., Arslan A. A new training method for support vector machines: clustering k-NN support vector machines. Expert Syst. Appl. 2008, 35:564-568.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 564-568
    • Çomak, E.1    Arslan, A.2
  • 39
    • 79952441195 scopus 로고    scopus 로고
    • A new weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function
    • Hwang J.P., Park S., Kim E. A new weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function. Expert Syst. Appl. 2011, 38:8580-8585.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 8580-8585
    • Hwang, J.P.1    Park, S.2    Kim, E.3
  • 40
    • 79958843215 scopus 로고    scopus 로고
    • TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition
    • Peng X. TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn. 2011, 44:2678-2692.
    • (2011) Pattern Recogn. , vol.44 , pp. 2678-2692
    • Peng, X.1
  • 41
    • 0037378238 scopus 로고    scopus 로고
    • A parallel solver for large quadratic programs in training support vector machines
    • Zanghirati G., Zanni L. A parallel solver for large quadratic programs in training support vector machines. Parallel Comput. 2003, 29:535-551.
    • (2003) Parallel Comput. , vol.29 , pp. 535-551
    • Zanghirati, G.1    Zanni, L.2
  • 44
    • 80053973599 scopus 로고    scopus 로고
    • Design of neural network for manipulating gas refinery sweetening regenerator column outputs
    • Koolivand Salooki M., Abedini R., Adib H., Koolivand H. Design of neural network for manipulating gas refinery sweetening regenerator column outputs. Sep. Purif. Technol. 2011, 82:1-9.
    • (2011) Sep. Purif. Technol. , vol.82 , pp. 1-9
    • Koolivand Salooki, M.1    Abedini, R.2    Adib, H.3    Koolivand, H.4
  • 45
    • 84870289803 scopus 로고    scopus 로고
    • Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions
    • Haghbakhsh R., Adib H., Keshavarz P., Koolivand M., Keshtkari S. Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions. Thermochim. Acta 2013, 551:124-130.
    • (2013) Thermochim. Acta , vol.551 , pp. 124-130
    • Haghbakhsh, R.1    Adib, H.2    Keshavarz, P.3    Koolivand, M.4    Keshtkari, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.