-
1
-
-
80053999078
-
Modeling and simulation of condensed sulfur in catalytic beds of Claus process: rapid estimation
-
Abedini R., KoolivandSalooki M., Ghasemian S. Modeling and simulation of condensed sulfur in catalytic beds of Claus process: rapid estimation. Chem. Eng. Res. Bull. 2010, 14:110-114.
-
(2010)
Chem. Eng. Res. Bull.
, vol.14
, pp. 110-114
-
-
Abedini, R.1
KoolivandSalooki, M.2
Ghasemian, S.3
-
2
-
-
84870367329
-
3 catalyst using artificial neural networks and genetic algorithm
-
3 catalyst using artificial neural networks and genetic algorithm. J.Nat. Gas Sci. Eng. 2013, 10:14-24.
-
(2013)
J.Nat. Gas Sci. Eng.
, vol.10
, pp. 14-24
-
-
Adib, H.1
Haghbakhsh, R.2
Sa'idi, M.3
Takassi, M.A.4
Sharifi, F.5
koolivand, M.6
Rahimpour, M.R.7
Keshtkari, S.8
-
3
-
-
40649103591
-
Kernel-based online machine learning and support vector reduction
-
Agarwal S., Saradhi V.V., Karnick H. Kernel-based online machine learning and support vector reduction. Neurocomputing 2008, 71:1230-1237.
-
(2008)
Neurocomputing
, vol.71
, pp. 1230-1237
-
-
Agarwal, S.1
Saradhi, V.V.2
Karnick, H.3
-
4
-
-
79959480027
-
Support Vector Machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data
-
Balabin R.M., Lomakina E.I. Support Vector Machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data. J.Phys. Chem. Chem. Phys. 2011, 13:11710-11718.
-
(2011)
J.Phys. Chem. Chem. Phys.
, vol.13
, pp. 11710-11718
-
-
Balabin, R.M.1
Lomakina, E.I.2
-
6
-
-
0025825656
-
Biotechnological sulphide removal from effluents
-
Buisman C.J.N., Lettinga G., Paasschens C.W.M., Habets L.H.A. Biotechnological sulphide removal from effluents. Water Sci. Technol. 1991, 24:347-356.
-
(1991)
Water Sci. Technol.
, vol.24
, pp. 347-356
-
-
Buisman, C.J.N.1
Lettinga, G.2
Paasschens, C.W.M.3
Habets, L.H.A.4
-
11
-
-
2342505830
-
Fault diagnosis based on Fisher discriminant analysis and Support Vector Machines
-
Chiang L.H., Kotanchek M.E., Kordon A.K. Fault diagnosis based on Fisher discriminant analysis and Support Vector Machines. Comput. Chem. Eng. 2004, 28:1389-1401.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1389-1401
-
-
Chiang, L.H.1
Kotanchek, M.E.2
Kordon, A.K.3
-
12
-
-
45049083533
-
Anew training method for support vector machines: clusteringk-NN support vector machines
-
Comak E., Arslan A. Anew training method for support vector machines: clusteringk-NN support vector machines. Expert Syst. Appl. 2008, 35:564-568.
-
(2008)
Expert Syst. Appl.
, vol.35
, pp. 564-568
-
-
Comak, E.1
Arslan, A.2
-
13
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Machine Learn. 1995, 20:273-297.
-
(1995)
Machine Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
15
-
-
79956270845
-
Neural Networks and Support Vector Machine models applied to energy consumption opti-mization in semiautogeneous grinding
-
Curilem M., Acuña G., Cubillos F., Vyhmeister E. Neural Networks and Support Vector Machine models applied to energy consumption opti-mization in semiautogeneous grinding. Chem. Eng. Trans. 2011, 25:761-766.
-
(2011)
Chem. Eng. Trans.
, vol.25
, pp. 761-766
-
-
Curilem, M.1
Acuña, G.2
Cubillos, F.3
Vyhmeister, E.4
-
16
-
-
48849104204
-
Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque-Hilsch vortex tubes using artificial neural networks
-
Dincer K., Tasdemir S., Baskaya S., Uysal B.Z. Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque-Hilsch vortex tubes using artificial neural networks. J.Appl. Therm. Eng. 2008, 28:2380-2390.
-
(2008)
J.Appl. Therm. Eng.
, vol.28
, pp. 2380-2390
-
-
Dincer, K.1
Tasdemir, S.2
Baskaya, S.3
Uysal, B.Z.4
-
17
-
-
84865572302
-
Ahybrid support vector machine and fuzzy reasoning based fault diagnosis and rescue system for stable glutamate fermentation
-
Ding J., Cao Y., Mpofua E., Shia Z. Ahybrid support vector machine and fuzzy reasoning based fault diagnosis and rescue system for stable glutamate fermentation. Chem. Eng. Res. Des. 2012, 90:1197-1207.
-
(2012)
Chem. Eng. Res. Des.
, vol.90
, pp. 1197-1207
-
-
Ding, J.1
Cao, Y.2
Mpofua, E.3
Shia, Z.4
-
18
-
-
80054712747
-
Phase equilibrium modeling of structure H clathrate hydrates of methane+water "insoluble" hydrocarbon promoter using QSPR molecular approach
-
Eslamimanesh A., Gharagheizi F., Mohammadi A.H., Richon D. Phase equilibrium modeling of structure H clathrate hydrates of methane+water "insoluble" hydrocarbon promoter using QSPR molecular approach. J.Chem. Eng. Data 2011, 56:3775-3793.
-
(2011)
J.Chem. Eng. Data
, vol.56
, pp. 3775-3793
-
-
Eslamimanesh, A.1
Gharagheizi, F.2
Mohammadi, A.H.3
Richon, D.4
-
19
-
-
84855174209
-
Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+water soluble organic promoters using support vector machine algorithm
-
Eslamimanesh A., Gharagheizib F., Illbeigi M., Mohammadi A.H., Fazlali A., Richon D. Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+water soluble organic promoters using support vector machine algorithm. Fluid Phase Equilib. 2012, 316:34-45.
-
(2012)
Fluid Phase Equilib.
, vol.316
, pp. 34-45
-
-
Eslamimanesh, A.1
Gharagheizib, F.2
Illbeigi, M.3
Mohammadi, A.H.4
Fazlali, A.5
Richon, D.6
-
21
-
-
39149092052
-
Biological sweetening of energy gases mimics in biotrickling filters
-
Fortuny M., Baeza J.A., Gamisans X., Casas C., Lafuente J., Deshusses M.A., Gabriel D. Biological sweetening of energy gases mimics in biotrickling filters. J.Chemosphere 2008, 71:10-17.
-
(2008)
J.Chemosphere
, vol.71
, pp. 10-17
-
-
Fortuny, M.1
Baeza, J.A.2
Gamisans, X.3
Casas, C.4
Lafuente, J.5
Deshusses, M.A.6
Gabriel, D.7
-
22
-
-
84872402039
-
Using mixed tertiary amines for gas sweetening energy requirement reduction
-
Fouad W.A., Berrouk A.S. Using mixed tertiary amines for gas sweetening energy requirement reduction. J.Nat. Gas Sci. Eng. 2013, 11:12-17.
-
(2013)
J.Nat. Gas Sci. Eng.
, vol.11
, pp. 12-17
-
-
Fouad, W.A.1
Berrouk, A.S.2
-
23
-
-
84870289803
-
Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions
-
Haghbakhsh R., Adib H., Keshavarz P., Koolivand M., Keshtkari S. Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions. Thermochim. Acta 2013, 551:124-130.
-
(2013)
Thermochim. Acta
, vol.551
, pp. 124-130
-
-
Haghbakhsh, R.1
Adib, H.2
Keshavarz, P.3
Koolivand, M.4
Keshtkari, S.5
-
24
-
-
0003074296
-
Support vector machines
-
Hearst M.A., Dumais S.T., Osman E., Platt J., Schölkopf B. Support vector machines. IEEE Intell. Syst. 1998, 13:18-28.
-
(1998)
IEEE Intell. Syst.
, vol.13
, pp. 18-28
-
-
Hearst, M.A.1
Dumais, S.T.2
Osman, E.3
Platt, J.4
Schölkopf, B.5
-
25
-
-
79952441195
-
Anew weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function
-
Hwang J.P., Park S., Kim E. Anew weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function. Expert Syst. Appl. 2011, 38:8580-8585.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 8580-8585
-
-
Hwang, J.P.1
Park, S.2
Kim, E.3
-
27
-
-
80053973599
-
Design of neural network for manipulating gas refinery sweetening regenerator column outputs
-
Koolivand Salooki M., Abedini R., Adib H., Koolivand H. Design of neural network for manipulating gas refinery sweetening regenerator column outputs. Sep. Purif. Technol. 2011, 82:1-9.
-
(2011)
Sep. Purif. Technol.
, vol.82
, pp. 1-9
-
-
Koolivand Salooki, M.1
Abedini, R.2
Adib, H.3
Koolivand, H.4
-
28
-
-
25844517176
-
Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process
-
Kulkarni A., Jayaraman V.K., Kulkarni B.D. Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process. Comput. Chem. Eng. 2005, 29:2128-2133.
-
(2005)
Comput. Chem. Eng.
, vol.29
, pp. 2128-2133
-
-
Kulkarni, A.1
Jayaraman, V.K.2
Kulkarni, B.D.3
-
29
-
-
84861538903
-
Pros and cons of different Nitrogen Removal Unit (NRU) technology
-
Kuo J.C., Wang K.H., Chen C. Pros and cons of different Nitrogen Removal Unit (NRU) technology. J.Nat. Gas Sci. Eng. 2012, 7:52-59.
-
(2012)
J.Nat. Gas Sci. Eng.
, vol.7
, pp. 52-59
-
-
Kuo, J.C.1
Wang, K.H.2
Chen, C.3
-
30
-
-
37349046499
-
An algorithm to cluster data for efficient classification of support vector machines
-
Li D.C., Fang Y.H. An algorithm to cluster data for efficient classification of support vector machines. Expert Syst. Appl. 2008, 34:2013-2018.
-
(2008)
Expert Syst. Appl.
, vol.34
, pp. 2013-2018
-
-
Li, D.C.1
Fang, Y.H.2
-
31
-
-
1842451609
-
2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol
-
2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol. Fluid Phase Equilib. 2004, 218:261-267.
-
(2004)
Fluid Phase Equilib.
, vol.218
, pp. 261-267
-
-
Libreros, M.E.R.1
Trejo, A.2
-
32
-
-
0023328034
-
-
Maddox R.N., Diers j., Bhairi A.M., Thomas-Cooper P.A., Elizondo E.M. Plant Oper. Prog. 1987, 6:112-117.
-
(1987)
Plant Oper. Prog.
, vol.6
, pp. 112-117
-
-
Maddox, R.N.1
Diers, J.2
Bhairi, A.M.3
Thomas-Cooper, P.A.4
Elizondo, E.M.5
-
33
-
-
80053571100
-
Acomparative study between LS-SVM method and semi empirical equations for modeling the solubility of different solutes in supercritical carbon dioxide
-
Mehdizadeh B., Movagharnejad K. Acomparative study between LS-SVM method and semi empirical equations for modeling the solubility of different solutes in supercritical carbon dioxide. Chem. Eng. Res. Des. 2011, 89:2420-2427.
-
(2011)
Chem. Eng. Res. Des.
, vol.89
, pp. 2420-2427
-
-
Mehdizadeh, B.1
Movagharnejad, K.2
-
34
-
-
75149116529
-
Modeling and simulation of sour gas membrane-absorption system: influence of operational parameters on species removal
-
Mohebi S., Mousavi S.M., Kiani S. Modeling and simulation of sour gas membrane-absorption system: influence of operational parameters on species removal. J.Nat. Gas Sci. Eng. 2009, 1:195-204.
-
(2009)
J.Nat. Gas Sci. Eng.
, vol.1
, pp. 195-204
-
-
Mohebi, S.1
Mousavi, S.M.2
Kiani, S.3
-
35
-
-
0346913094
-
Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus
-
Oyarzun P., Arancibia F., Canales C., Aroca G.E. Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem. 2003, 39:165-170.
-
(2003)
Process Biochem.
, vol.39
, pp. 165-170
-
-
Oyarzun, P.1
Arancibia, F.2
Canales, C.3
Aroca, G.E.4
-
36
-
-
2642567971
-
-
Leu-ven. Leuven. Belgium
-
Pelckmans K., Suykens J.A.K., Van Gestel T., De Brabanter D., Lukas L., Hamers B., De Moor B., Vandewalle J. LS-SVMlab: a Matlab/C Toolbox for Least Squares Support Vector Machines 2002, Leu-ven. Leuven. Belgium.
-
(2002)
LS-SVMlab: a Matlab/C Toolbox for Least Squares Support Vector Machines
-
-
Pelckmans, K.1
Suykens, J.A.K.2
Van Gestel, T.3
De Brabanter, D.4
Lukas, L.5
Hamers, B.6
De Moor, B.7
Vandewalle, J.8
-
37
-
-
79958843215
-
TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition
-
Peng X. TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recog. Lett. 2011, 44:2678-2692.
-
(2011)
Pattern Recog. Lett.
, vol.44
, pp. 2678-2692
-
-
Peng, X.1
-
39
-
-
0032523506
-
Properties of support vector machines
-
Pontil M., Verri A. Properties of support vector machines. Neural Comput. 1998, 10:955-974.
-
(1998)
Neural Comput.
, vol.10
, pp. 955-974
-
-
Pontil, M.1
Verri, A.2
-
41
-
-
80053982717
-
Aneural network for the gas sweetening absorption column using genetic algorithm
-
Seqatoleslami N., KoolivandSalooki M., Mohamadi N. Aneural network for the gas sweetening absorption column using genetic algorithm. Pet. Sci. Technol. 2011, 29:1437-1448.
-
(2011)
Pet. Sci. Technol.
, vol.29
, pp. 1437-1448
-
-
Seqatoleslami, N.1
KoolivandSalooki, M.2
Mohamadi, N.3
-
43
-
-
84868618603
-
Sphere Support Vector Machines for large classification tasks
-
Strack R., Kecman V., Strack B., Li Q. Sphere Support Vector Machines for large classification tasks. Neurocomputing 2013, 101:59-67.
-
(2013)
Neurocomputing
, vol.101
, pp. 59-67
-
-
Strack, R.1
Kecman, V.2
Strack, B.3
Li, Q.4
-
44
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9:293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
45
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Gestel T.V., Brabanter J.D., Moor B.D., Vandewalle J. Least Squares Support Vector Machines 2002, World Scientific, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Gestel, T.V.2
Brabanter, J.D.3
Moor, B.D.4
Vandewalle, J.5
-
46
-
-
17644416059
-
The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent part I, the absorption of hydrogen sulfide in metal sulfate solutions
-
Ter Maat H., Hogendoornb J.A., Versteeg G.F. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent part I, the absorption of hydrogen sulfide in metal sulfate solutions. Sep. Purif. Technol. 2005, 43:183-197.
-
(2005)
Sep. Purif. Technol.
, vol.43
, pp. 183-197
-
-
Ter Maat, H.1
Hogendoornb, J.A.2
Versteeg, G.F.3
-
47
-
-
77955415283
-
Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM)
-
Terzica J., Nagarajahb C.R., Alamgira M. Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM). Sensor Actuator 2010, 161:278-287.
-
(2010)
Sensor Actuator
, vol.161
, pp. 278-287
-
-
Terzica, J.1
Nagarajahb, C.R.2
Alamgira, M.3
-
50
-
-
77951296145
-
Hybrid modeling of penicillin fermentation process based on least square support vector machine
-
Wang X., Chen J., Liu C., Pan F. Hybrid modeling of penicillin fermentation process based on least square support vector machine. Chem. Eng. Res. Des. 2010, 88:415-420.
-
(2010)
Chem. Eng. Res. Des.
, vol.88
, pp. 415-420
-
-
Wang, X.1
Chen, J.2
Liu, C.3
Pan, F.4
-
51
-
-
18844432320
-
Artificial neural network based prediction of hydrogen content of coal in power station boilers
-
Yao H.M., Vuthaluru H.B., Tade M.O., Djukanovic D. Artificial neural network based prediction of hydrogen content of coal in power station boilers. Fuel 2005, 84:1535-1542.
-
(2005)
Fuel
, vol.84
, pp. 1535-1542
-
-
Yao, H.M.1
Vuthaluru, H.B.2
Tade, M.O.3
Djukanovic, D.4
-
52
-
-
56949099324
-
Performance assessment of a novel fault diagnosis system based on support vector machines
-
Yélamosa I., Escuderob G., Graells M., Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput. Chem. Eng. 2009, 33:244-255.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 244-255
-
-
Yélamosa, I.1
Escuderob, G.2
Graells, M.3
Puigjaner, L.4
-
53
-
-
84859392648
-
ABayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu Jie ABayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
54
-
-
0037378238
-
Aparallel solver for large quadratic programs in training support vector machines
-
Zanghirati G., Zanni L. Aparallel solver for large quadratic programs in training support vector machines. Parallel Comput. 2003, 29:535-551.
-
(2003)
Parallel Comput.
, vol.29
, pp. 535-551
-
-
Zanghirati, G.1
Zanni, L.2
-
55
-
-
68149170852
-
Modeling pressure drop coefficient for cyclone separators: a support vector machine approach
-
Zhao B. Modeling pressure drop coefficient for cyclone separators: a support vector machine approach. Chem. Eng. Sci. 2009, 64:4131-4136.
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 4131-4136
-
-
Zhao, B.1
-
56
-
-
28844500372
-
Application of support vector machine (SVM) for prediction toxic activity of different data sets
-
Zhao C.Y., Zhang H.X., Zhang X.Y., Liu M.C., Hu Z.D., Fan B.T. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology 2006, 217:105-119.
-
(2006)
Toxicology
, vol.217
, pp. 105-119
-
-
Zhao, C.Y.1
Zhang, H.X.2
Zhang, X.Y.3
Liu, M.C.4
Hu, Z.D.5
Fan, B.T.6
|