메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 121-131

Support Vector Machine based modeling of an industrial natural gas sweetening plant

Author keywords

Absorption column; Amine regenerator column; Gas sweetening plant; Support Vector Machine

Indexed keywords

ABSORPTION COLUMNS; ACCURATE ESTIMATION; GAS SWEETENING PLANTS; MODEL DEVELOPMENT; MODEL ESTIMATION; OPERATING PLANTS; PROCESS VARIABLES; SQUARED CORRELATION COEFFICIENTS;

EID: 84880358053     PISSN: 18755100     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jngse.2013.06.004     Document Type: Article
Times cited : (43)

References (56)
  • 1
    • 80053999078 scopus 로고    scopus 로고
    • Modeling and simulation of condensed sulfur in catalytic beds of Claus process: rapid estimation
    • Abedini R., KoolivandSalooki M., Ghasemian S. Modeling and simulation of condensed sulfur in catalytic beds of Claus process: rapid estimation. Chem. Eng. Res. Bull. 2010, 14:110-114.
    • (2010) Chem. Eng. Res. Bull. , vol.14 , pp. 110-114
    • Abedini, R.1    KoolivandSalooki, M.2    Ghasemian, S.3
  • 3
    • 40649103591 scopus 로고    scopus 로고
    • Kernel-based online machine learning and support vector reduction
    • Agarwal S., Saradhi V.V., Karnick H. Kernel-based online machine learning and support vector reduction. Neurocomputing 2008, 71:1230-1237.
    • (2008) Neurocomputing , vol.71 , pp. 1230-1237
    • Agarwal, S.1    Saradhi, V.V.2    Karnick, H.3
  • 4
    • 79959480027 scopus 로고    scopus 로고
    • Support Vector Machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data
    • Balabin R.M., Lomakina E.I. Support Vector Machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data. J.Phys. Chem. Chem. Phys. 2011, 13:11710-11718.
    • (2011) J.Phys. Chem. Chem. Phys. , vol.13 , pp. 11710-11718
    • Balabin, R.M.1    Lomakina, E.I.2
  • 11
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and Support Vector Machines
    • Chiang L.H., Kotanchek M.E., Kordon A.K. Fault diagnosis based on Fisher discriminant analysis and Support Vector Machines. Comput. Chem. Eng. 2004, 28:1389-1401.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1389-1401
    • Chiang, L.H.1    Kotanchek, M.E.2    Kordon, A.K.3
  • 12
    • 45049083533 scopus 로고    scopus 로고
    • Anew training method for support vector machines: clusteringk-NN support vector machines
    • Comak E., Arslan A. Anew training method for support vector machines: clusteringk-NN support vector machines. Expert Syst. Appl. 2008, 35:564-568.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 564-568
    • Comak, E.1    Arslan, A.2
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Machine Learn. 1995, 20:273-297.
    • (1995) Machine Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 79956270845 scopus 로고    scopus 로고
    • Neural Networks and Support Vector Machine models applied to energy consumption opti-mization in semiautogeneous grinding
    • Curilem M., Acuña G., Cubillos F., Vyhmeister E. Neural Networks and Support Vector Machine models applied to energy consumption opti-mization in semiautogeneous grinding. Chem. Eng. Trans. 2011, 25:761-766.
    • (2011) Chem. Eng. Trans. , vol.25 , pp. 761-766
    • Curilem, M.1    Acuña, G.2    Cubillos, F.3    Vyhmeister, E.4
  • 16
    • 48849104204 scopus 로고    scopus 로고
    • Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque-Hilsch vortex tubes using artificial neural networks
    • Dincer K., Tasdemir S., Baskaya S., Uysal B.Z. Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque-Hilsch vortex tubes using artificial neural networks. J.Appl. Therm. Eng. 2008, 28:2380-2390.
    • (2008) J.Appl. Therm. Eng. , vol.28 , pp. 2380-2390
    • Dincer, K.1    Tasdemir, S.2    Baskaya, S.3    Uysal, B.Z.4
  • 17
    • 84865572302 scopus 로고    scopus 로고
    • Ahybrid support vector machine and fuzzy reasoning based fault diagnosis and rescue system for stable glutamate fermentation
    • Ding J., Cao Y., Mpofua E., Shia Z. Ahybrid support vector machine and fuzzy reasoning based fault diagnosis and rescue system for stable glutamate fermentation. Chem. Eng. Res. Des. 2012, 90:1197-1207.
    • (2012) Chem. Eng. Res. Des. , vol.90 , pp. 1197-1207
    • Ding, J.1    Cao, Y.2    Mpofua, E.3    Shia, Z.4
  • 18
    • 80054712747 scopus 로고    scopus 로고
    • Phase equilibrium modeling of structure H clathrate hydrates of methane+water "insoluble" hydrocarbon promoter using QSPR molecular approach
    • Eslamimanesh A., Gharagheizi F., Mohammadi A.H., Richon D. Phase equilibrium modeling of structure H clathrate hydrates of methane+water "insoluble" hydrocarbon promoter using QSPR molecular approach. J.Chem. Eng. Data 2011, 56:3775-3793.
    • (2011) J.Chem. Eng. Data , vol.56 , pp. 3775-3793
    • Eslamimanesh, A.1    Gharagheizi, F.2    Mohammadi, A.H.3    Richon, D.4
  • 19
    • 84855174209 scopus 로고    scopus 로고
    • Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+water soluble organic promoters using support vector machine algorithm
    • Eslamimanesh A., Gharagheizib F., Illbeigi M., Mohammadi A.H., Fazlali A., Richon D. Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+water soluble organic promoters using support vector machine algorithm. Fluid Phase Equilib. 2012, 316:34-45.
    • (2012) Fluid Phase Equilib. , vol.316 , pp. 34-45
    • Eslamimanesh, A.1    Gharagheizib, F.2    Illbeigi, M.3    Mohammadi, A.H.4    Fazlali, A.5    Richon, D.6
  • 22
    • 84872402039 scopus 로고    scopus 로고
    • Using mixed tertiary amines for gas sweetening energy requirement reduction
    • Fouad W.A., Berrouk A.S. Using mixed tertiary amines for gas sweetening energy requirement reduction. J.Nat. Gas Sci. Eng. 2013, 11:12-17.
    • (2013) J.Nat. Gas Sci. Eng. , vol.11 , pp. 12-17
    • Fouad, W.A.1    Berrouk, A.S.2
  • 23
    • 84870289803 scopus 로고    scopus 로고
    • Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions
    • Haghbakhsh R., Adib H., Keshavarz P., Koolivand M., Keshtkari S. Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions. Thermochim. Acta 2013, 551:124-130.
    • (2013) Thermochim. Acta , vol.551 , pp. 124-130
    • Haghbakhsh, R.1    Adib, H.2    Keshavarz, P.3    Koolivand, M.4    Keshtkari, S.5
  • 25
    • 79952441195 scopus 로고    scopus 로고
    • Anew weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function
    • Hwang J.P., Park S., Kim E. Anew weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function. Expert Syst. Appl. 2011, 38:8580-8585.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 8580-8585
    • Hwang, J.P.1    Park, S.2    Kim, E.3
  • 27
    • 80053973599 scopus 로고    scopus 로고
    • Design of neural network for manipulating gas refinery sweetening regenerator column outputs
    • Koolivand Salooki M., Abedini R., Adib H., Koolivand H. Design of neural network for manipulating gas refinery sweetening regenerator column outputs. Sep. Purif. Technol. 2011, 82:1-9.
    • (2011) Sep. Purif. Technol. , vol.82 , pp. 1-9
    • Koolivand Salooki, M.1    Abedini, R.2    Adib, H.3    Koolivand, H.4
  • 28
    • 25844517176 scopus 로고    scopus 로고
    • Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process
    • Kulkarni A., Jayaraman V.K., Kulkarni B.D. Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process. Comput. Chem. Eng. 2005, 29:2128-2133.
    • (2005) Comput. Chem. Eng. , vol.29 , pp. 2128-2133
    • Kulkarni, A.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 29
    • 84861538903 scopus 로고    scopus 로고
    • Pros and cons of different Nitrogen Removal Unit (NRU) technology
    • Kuo J.C., Wang K.H., Chen C. Pros and cons of different Nitrogen Removal Unit (NRU) technology. J.Nat. Gas Sci. Eng. 2012, 7:52-59.
    • (2012) J.Nat. Gas Sci. Eng. , vol.7 , pp. 52-59
    • Kuo, J.C.1    Wang, K.H.2    Chen, C.3
  • 30
    • 37349046499 scopus 로고    scopus 로고
    • An algorithm to cluster data for efficient classification of support vector machines
    • Li D.C., Fang Y.H. An algorithm to cluster data for efficient classification of support vector machines. Expert Syst. Appl. 2008, 34:2013-2018.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2013-2018
    • Li, D.C.1    Fang, Y.H.2
  • 31
    • 1842451609 scopus 로고    scopus 로고
    • 2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol
    • 2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol. Fluid Phase Equilib. 2004, 218:261-267.
    • (2004) Fluid Phase Equilib. , vol.218 , pp. 261-267
    • Libreros, M.E.R.1    Trejo, A.2
  • 33
    • 80053571100 scopus 로고    scopus 로고
    • Acomparative study between LS-SVM method and semi empirical equations for modeling the solubility of different solutes in supercritical carbon dioxide
    • Mehdizadeh B., Movagharnejad K. Acomparative study between LS-SVM method and semi empirical equations for modeling the solubility of different solutes in supercritical carbon dioxide. Chem. Eng. Res. Des. 2011, 89:2420-2427.
    • (2011) Chem. Eng. Res. Des. , vol.89 , pp. 2420-2427
    • Mehdizadeh, B.1    Movagharnejad, K.2
  • 34
    • 75149116529 scopus 로고    scopus 로고
    • Modeling and simulation of sour gas membrane-absorption system: influence of operational parameters on species removal
    • Mohebi S., Mousavi S.M., Kiani S. Modeling and simulation of sour gas membrane-absorption system: influence of operational parameters on species removal. J.Nat. Gas Sci. Eng. 2009, 1:195-204.
    • (2009) J.Nat. Gas Sci. Eng. , vol.1 , pp. 195-204
    • Mohebi, S.1    Mousavi, S.M.2    Kiani, S.3
  • 35
    • 0346913094 scopus 로고    scopus 로고
    • Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus
    • Oyarzun P., Arancibia F., Canales C., Aroca G.E. Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem. 2003, 39:165-170.
    • (2003) Process Biochem. , vol.39 , pp. 165-170
    • Oyarzun, P.1    Arancibia, F.2    Canales, C.3    Aroca, G.E.4
  • 37
    • 79958843215 scopus 로고    scopus 로고
    • TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition
    • Peng X. TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recog. Lett. 2011, 44:2678-2692.
    • (2011) Pattern Recog. Lett. , vol.44 , pp. 2678-2692
    • Peng, X.1
  • 39
    • 0032523506 scopus 로고    scopus 로고
    • Properties of support vector machines
    • Pontil M., Verri A. Properties of support vector machines. Neural Comput. 1998, 10:955-974.
    • (1998) Neural Comput. , vol.10 , pp. 955-974
    • Pontil, M.1    Verri, A.2
  • 41
    • 80053982717 scopus 로고    scopus 로고
    • Aneural network for the gas sweetening absorption column using genetic algorithm
    • Seqatoleslami N., KoolivandSalooki M., Mohamadi N. Aneural network for the gas sweetening absorption column using genetic algorithm. Pet. Sci. Technol. 2011, 29:1437-1448.
    • (2011) Pet. Sci. Technol. , vol.29 , pp. 1437-1448
    • Seqatoleslami, N.1    KoolivandSalooki, M.2    Mohamadi, N.3
  • 43
    • 84868618603 scopus 로고    scopus 로고
    • Sphere Support Vector Machines for large classification tasks
    • Strack R., Kecman V., Strack B., Li Q. Sphere Support Vector Machines for large classification tasks. Neurocomputing 2013, 101:59-67.
    • (2013) Neurocomputing , vol.101 , pp. 59-67
    • Strack, R.1    Kecman, V.2    Strack, B.3    Li, Q.4
  • 44
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9:293-300.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 46
    • 17644416059 scopus 로고    scopus 로고
    • The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent part I, the absorption of hydrogen sulfide in metal sulfate solutions
    • Ter Maat H., Hogendoornb J.A., Versteeg G.F. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent part I, the absorption of hydrogen sulfide in metal sulfate solutions. Sep. Purif. Technol. 2005, 43:183-197.
    • (2005) Sep. Purif. Technol. , vol.43 , pp. 183-197
    • Ter Maat, H.1    Hogendoornb, J.A.2    Versteeg, G.F.3
  • 47
    • 77955415283 scopus 로고    scopus 로고
    • Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM)
    • Terzica J., Nagarajahb C.R., Alamgira M. Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM). Sensor Actuator 2010, 161:278-287.
    • (2010) Sensor Actuator , vol.161 , pp. 278-287
    • Terzica, J.1    Nagarajahb, C.R.2    Alamgira, M.3
  • 50
    • 77951296145 scopus 로고    scopus 로고
    • Hybrid modeling of penicillin fermentation process based on least square support vector machine
    • Wang X., Chen J., Liu C., Pan F. Hybrid modeling of penicillin fermentation process based on least square support vector machine. Chem. Eng. Res. Des. 2010, 88:415-420.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 415-420
    • Wang, X.1    Chen, J.2    Liu, C.3    Pan, F.4
  • 51
    • 18844432320 scopus 로고    scopus 로고
    • Artificial neural network based prediction of hydrogen content of coal in power station boilers
    • Yao H.M., Vuthaluru H.B., Tade M.O., Djukanovic D. Artificial neural network based prediction of hydrogen content of coal in power station boilers. Fuel 2005, 84:1535-1542.
    • (2005) Fuel , vol.84 , pp. 1535-1542
    • Yao, H.M.1    Vuthaluru, H.B.2    Tade, M.O.3    Djukanovic, D.4
  • 52
    • 56949099324 scopus 로고    scopus 로고
    • Performance assessment of a novel fault diagnosis system based on support vector machines
    • Yélamosa I., Escuderob G., Graells M., Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput. Chem. Eng. 2009, 33:244-255.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 244-255
    • Yélamosa, I.1    Escuderob, G.2    Graells, M.3    Puigjaner, L.4
  • 53
    • 84859392648 scopus 로고    scopus 로고
    • ABayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu Jie ABayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 54
    • 0037378238 scopus 로고    scopus 로고
    • Aparallel solver for large quadratic programs in training support vector machines
    • Zanghirati G., Zanni L. Aparallel solver for large quadratic programs in training support vector machines. Parallel Comput. 2003, 29:535-551.
    • (2003) Parallel Comput. , vol.29 , pp. 535-551
    • Zanghirati, G.1    Zanni, L.2
  • 55
    • 68149170852 scopus 로고    scopus 로고
    • Modeling pressure drop coefficient for cyclone separators: a support vector machine approach
    • Zhao B. Modeling pressure drop coefficient for cyclone separators: a support vector machine approach. Chem. Eng. Sci. 2009, 64:4131-4136.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 4131-4136
    • Zhao, B.1
  • 56
    • 28844500372 scopus 로고    scopus 로고
    • Application of support vector machine (SVM) for prediction toxic activity of different data sets
    • Zhao C.Y., Zhang H.X., Zhang X.Y., Liu M.C., Hu Z.D., Fan B.T. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology 2006, 217:105-119.
    • (2006) Toxicology , vol.217 , pp. 105-119
    • Zhao, C.Y.1    Zhang, H.X.2    Zhang, X.Y.3    Liu, M.C.4    Hu, Z.D.5    Fan, B.T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.