-
1
-
-
45049084985
-
-
Abe, S., & Inoue, T. (2002). Fuzzy support vector machines for multiclass problems. ESANN' 2002. In Proceedings (European symposium on artificial neural networks) Bruges (Belgium), 24-26 April. (pp. 113-118): d-side public, ISBN 2-930307-02-1.
-
Abe, S., & Inoue, T. (2002). Fuzzy support vector machines for multiclass problems. ESANN' 2002. In Proceedings (European symposium on artificial neural networks) Bruges (Belgium), 24-26 April. (pp. 113-118): d-side public, ISBN 2-930307-02-1.
-
-
-
-
2
-
-
8644219554
-
Probabilistic SVM outputs for pattern recognition using analytical geometry
-
Ana M.-B., Nikolik D., and Curfs L.M.G. Probabilistic SVM outputs for pattern recognition using analytical geometry. Neurocomputing 62 (2004) 293-303
-
(2004)
Neurocomputing
, vol.62
, pp. 293-303
-
-
Ana, M.-B.1
Nikolik, D.2
Curfs, L.M.G.3
-
3
-
-
0002910628
-
-
Bonneville, M., Meunier, J., Bengio, Y.,& Soucy, J. P. (1998). Support vector machines for improving the classification of brain PET images. In Proceedings of the SPIE medical imaging symposium (Vol. 3338, pp. 264-273). San Diego, CA.
-
Bonneville, M., Meunier, J., Bengio, Y.,& Soucy, J. P. (1998). Support vector machines for improving the classification of brain PET images. In Proceedings of the SPIE medical imaging symposium (Vol. 3338, pp. 264-273). San Diego, CA.
-
-
-
-
4
-
-
0035400665
-
The local paradigm for modeling and control: From neuro-fuzzy to lazy learning
-
Elsevier
-
Bontempi G., Bersini H., and Birattari M. The local paradigm for modeling and control: From neuro-fuzzy to lazy learning. Fuzzy sets and systems Vol. 121 (2001), Elsevier
-
(2001)
Fuzzy sets and systems
, vol.121
-
-
Bontempi, G.1
Bersini, H.2
Birattari, M.3
-
5
-
-
84901251330
-
-
Bontempi, G., Birattari, M., & Bersini, H. (1998). Recursive lazy learning for modeling and control. In Machine learning: ECML-98 (10th European conference on machine learning) (pp. 292-303). April 21-23, 1998, Chemnitz, Germany.
-
Bontempi, G., Birattari, M., & Bersini, H. (1998). Recursive lazy learning for modeling and control. In Machine learning: ECML-98 (10th European conference on machine learning) (pp. 292-303). April 21-23, 1998, Chemnitz, Germany.
-
-
-
-
6
-
-
0041339696
-
Modified support vector novelty detector using training data with outliers
-
Cao L.J., Lee H.P., and Chong W.K. Modified support vector novelty detector using training data with outliers. Pattern Recognition Letters 24 (2003) 2479-2487
-
(2003)
Pattern Recognition Letters
, vol.24
, pp. 2479-2487
-
-
Cao, L.J.1
Lee, H.P.2
Chong, W.K.3
-
7
-
-
30944442440
-
A study of Taiwan's issuer credit rating systems using support vector machines
-
Chen W.-H., and Shih J.-Y. A study of Taiwan's issuer credit rating systems using support vector machines. Expert Systems with Applications 30 (2006) 427-435
-
(2006)
Expert Systems with Applications
, vol.30
, pp. 427-435
-
-
Chen, W.-H.1
Shih, J.-Y.2
-
8
-
-
33645010982
-
A support vector machine using lazy learning approach for multi-class classification
-
Çomak E., and Arslan A. A support vector machine using lazy learning approach for multi-class classification. Medical Engineering & Technology 30 2 (2006) 73-77
-
(2006)
Medical Engineering & Technology
, vol.30
, Issue.2
, pp. 73-77
-
-
Çomak, E.1
Arslan, A.2
-
10
-
-
0035754859
-
-
Goh, K.-S., Chang, E., & Cheng, K. T. (2001). SVM Binary classifier ensembles for image classification, CIKM'01 (pp. 395-402). Atlanta, Georgia, USA. November 5-10.
-
Goh, K.-S., Chang, E., & Cheng, K. T. (2001). SVM Binary classifier ensembles for image classification, CIKM'01 (pp. 395-402). Atlanta, Georgia, USA. November 5-10.
-
-
-
-
11
-
-
45049083722
-
-
Huang, J., Shao, X., & Wechsler, H. (1998). Face pose discrimination using support vector machines (SVM). In Proceedings of the 14th international conference on pattern recognition, (ICPR), (Vol. 1, pp. 154-156). Brisbane, Queensland, Australia.
-
Huang, J., Shao, X., & Wechsler, H. (1998). Face pose discrimination using support vector machines (SVM). In Proceedings of the 14th international conference on pattern recognition, (ICPR), (Vol. 1, pp. 154-156). Brisbane, Queensland, Australia.
-
-
-
-
12
-
-
84957069814
-
-
Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features. In Proceedings of the 10th European conference on machine learning, (Vol. 1, pp. 137-142). Chemnitz, Germany.
-
Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features. In Proceedings of the 10th European conference on machine learning, (Vol. 1, pp. 137-142). Chemnitz, Germany.
-
-
-
-
13
-
-
0002229304
-
Pairwise classification and support vector machines
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
-
Krebel U.H.G. Pairwise classification and support vector machines. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in kernel methods: Support vector learning (1999), MIT Press, Cambridge, MA 255-268
-
(1999)
Advances in kernel methods: Support vector learning
, pp. 255-268
-
-
Krebel, U.H.G.1
-
14
-
-
4644290661
-
Training algorithms for fuzzy support vector machines with noisy data
-
Lin C.-f., and Wang S.-d. Training algorithms for fuzzy support vector machines with noisy data. Pattern Recognition Letters 25 (2004) 1647-1656
-
(2004)
Pattern Recognition Letters
, vol.25
, pp. 1647-1656
-
-
Lin, C.-f.1
Wang, S.-d.2
-
16
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters 9 3 (1999) 293-300
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
17
-
-
0038355084
-
Fuzzy least squares support vector machines for multi-class problems
-
Elsevier
-
Tsujinishi D., and Abe S. Fuzzy least squares support vector machines for multi-class problems. Neural networks field Vol. 16 (2003), Elsevier
-
(2003)
Neural networks field
, vol.16
-
-
Tsujinishi, D.1
Abe, S.2
-
18
-
-
45049088872
-
-
UCI Repository of Machine Learning Databases. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/liverdisorders/bupa.data.
-
UCI Repository of Machine Learning Databases. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/liverdisorders/bupa.data.
-
-
-
-
21
-
-
0029308071
-
Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control
-
Wang C.-H., Wang W.-Y., Lee T.-T., and Tseng P.-S. Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control. IEEE Transactions on Systems, Man and Cybernetics 25 5 (1995) 841-851
-
(1995)
IEEE Transactions on Systems, Man and Cybernetics
, vol.25
, Issue.5
, pp. 841-851
-
-
Wang, C.-H.1
Wang, W.-Y.2
Lee, T.-T.3
Tseng, P.-S.4
-
22
-
-
84880679854
-
-
Weston, J. (1999). Leave-one-out support vector machines. In Dean, T. (Ed.), Proceedings of the 16th international joint conference on artificial intelligence, IJCAI 99 (pp. 727-733). Morgan, Kaufmann.
-
Weston, J. (1999). Leave-one-out support vector machines. In Dean, T. (Ed.), Proceedings of the 16th international joint conference on artificial intelligence, IJCAI 99 (pp. 727-733). Morgan, Kaufmann.
-
-
-
-
23
-
-
0005035923
-
Adaptive margin support vector machines
-
Smola A., Bartlett P., Scholkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
-
Weston J., and Herbrich R. Adaptive margin support vector machines. In: Smola A., Bartlett P., Scholkopf B., and Schuurmans D. (Eds). Advances in large margin classifiers (2000), MIT Press, Cambridge, MA 281-295
-
(2000)
Advances in large margin classifiers
, pp. 281-295
-
-
Weston, J.1
Herbrich, R.2
-
24
-
-
4644347704
-
Design efficient support vector machine for fast classification
-
Zhan Y., and Shen D. Design efficient support vector machine for fast classification. Pattern Recognition 38 (2005) 157-161
-
(2005)
Pattern Recognition
, vol.38
, pp. 157-161
-
-
Zhan, Y.1
Shen, D.2
-
25
-
-
33750453728
-
Clustering support vector machines for protein local structure prediction
-
Zhong W., He J., Harrison R., Tai P.C., and Pan Y. Clustering support vector machines for protein local structure prediction. Expert Systems with Applications 32 (2007) 518-526
-
(2007)
Expert Systems with Applications
, vol.32
, pp. 518-526
-
-
Zhong, W.1
He, J.2
Harrison, R.3
Tai, P.C.4
Pan, Y.5
|