-
1
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler (Ed.), Pittsburgh, PA: ACM Press
-
Boser B.E., Guyon I.M., Vapnik V.N. A training algorithm for optimal margin classifiers. Haussler D. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. 1992;144-152 ACM Press, Pittsburgh, PA.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
2
-
-
0021479943
-
An O(n) algorithm for quadratic knapsack problems
-
Brucker P. An. O(n) algorithm for quadratic knapsack problems Oper. Res. Lett. 3:1984;163-166.
-
(1984)
Oper. Res. Lett.
, vol.3
, pp. 163-166
-
-
Brucker, P.1
-
3
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 2:1998;121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
5
-
-
0003819899
-
-
Technical Report 00-05, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
-
M.C. Ferris, T.S. Munson, Interior Point Methods for Massive Support Vector Machines, Technical Report 00-05, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
-
(2000)
Interior Point Methods for Massive Support Vector Machines
-
-
Ferris, M.C.1
Munson, T.S.2
-
6
-
-
0024754737
-
Performance of parallel processors
-
Flatt H.P., Kennedy K. Performance of parallel processors. Parallel Comput. 12:1989;1-20.
-
(1989)
Parallel Comput.
, vol.12
, pp. 1-20
-
-
Flatt, H.P.1
Kennedy, K.2
-
7
-
-
0012538722
-
-
Technical Report 01-02, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
-
G. Fung, O.L. Mangasarian, Proximal Support Vector Machines Classifiers, Technical Report 01-02, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2001.
-
(2001)
Proximal Support Vector Machines Classifiers
-
-
Fung, G.1
Mangasarian, O.L.2
-
8
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C.J.C. Burges, A. Smola (Eds.), Cambridge, MA: MIT Press
-
Joachims T. Making large-scale SVM learning practical. Schölkopf B., Burges C.J.C., Smola A. Advances in Kernel Methods - Support Vector Learning. 1998;MIT Press, Cambridge, MA.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
10
-
-
0003710385
-
-
Technical Report 99-03, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
-
Y.J. Lee, O.L. Mangasarian, SSVM: A Smooth Support Vector Machines, Technical Report 99-03, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 1999.
-
(1999)
SSVM: A Smooth Support Vector Machines
-
-
Lee, Y.J.1
Mangasarian, O.L.2
-
11
-
-
0012487218
-
-
Technical Report 00-07, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
-
Y.J. Lee, O.L. Mangasarian, RSVM: Reduced Support Vector Machines, Technical Report 00-07, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
-
(2000)
RSVM: Reduced Support Vector Machines
-
-
Lee, Y.J.1
Mangasarian, O.L.2
-
12
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
Lin C.J. On the convergence of the decomposition method for support vector machines. IEEE Trans. Neural Networks. 12:2001;1288-1298.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 1288-1298
-
-
Lin, C.J.1
-
13
-
-
0038178786
-
-
Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
-
C.J. Lin, Linear Convergence of a Decomposition Method for Support Vector Machines, Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan, 2002.
-
(2002)
Linear Convergence of a Decomposition Method for Support Vector Machines
-
-
Lin, C.J.1
-
15
-
-
0004229033
-
-
Technical Report 00-04, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
-
O.L. Mangasarian, D.R. Musicant, Active Support Vector Machine Classification, Technical Report 00-04, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
-
(2000)
Active Support Vector Machine Classification
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
16
-
-
0003408791
-
-
Technical Report 00-06, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
-
O.L. Mangasarian, D.R. Musicant, Lagrangian Support Vector Machines, Technical Report 00-06, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
-
(2000)
Lagrangian Support Vector Machines
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
20
-
-
0026835468
-
Massively parallel algorithms for single constrained convex programs
-
Nielsen S.N., Zenios S.A. Massively parallel algorithms for single constrained convex programs. ORSA J. Comput. 4:1992;166-181.
-
(1992)
ORSA J. Comput.
, vol.4
, pp. 166-181
-
-
Nielsen, S.N.1
Zenios, S.A.2
-
21
-
-
0031334889
-
An improved training algorithm for support vector machines
-
J. Principe, L. Giles, N. Morgan, E. Wilson, (Eds.), Amelia Island, FL
-
E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in: J. Principe, L. Giles, N. Morgan, E. Wilson, (Eds.), Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL, 1997, pp. 276-285.
-
(1997)
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
22
-
-
0000859664
-
An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
-
Pardalos P.M., Kovoor N. An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Math. Prog. 46:1990;321-328.
-
(1990)
Math. Prog.
, vol.46
, pp. 321-328
-
-
Pardalos, P.M.1
Kovoor, N.2
-
23
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, A. Smola (Eds.), Cambridge, MA: MIT Press
-
Platt J.C. Fast training of support vector machines using sequential minimal optimization. Schölkopf B., Burges C., Smola A. Advances in Kernel Methods - Support Vector Learning. 1998;MIT Press, Cambridge, MA.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.C.1
-
24
-
-
84898983292
-
Using analytic QP and sparseness to speed training of support vector machines
-
M.S. Kearns, S.A. Solla, Cohn D.A. (Eds.), Cambridge, Mass: MIT Press
-
Platt J.C. Using analytic QP and sparseness to speed training of support vector machines. Kearns M.S., Solla S.A., Cohn D.A. Advances in Neural Information Processing Systems. vol. 11:1999;MIT Press, Cambridge, Mass.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
-
-
Platt, J.C.1
-
25
-
-
84870574117
-
On the efficiency of splitting and projection methods for large strictly convex quadratic programs
-
G. Di Pillo, F. Giannessi (Eds.), Kluwer Academic Publishers
-
Ruggiero V., Zanni L. On the efficiency of splitting and projection methods for large strictly convex quadratic programs. Di Pillo G., Giannessi F. Nonlinear Optimization and Related Topics, Applied Optimization. vol. 36:1999;401-413 Kluwer Academic Publishers.
-
(1999)
Nonlinear Optimization and Related Topics, Applied Optimization
, vol.36
, pp. 401-413
-
-
Ruggiero, V.1
Zanni, L.2
-
26
-
-
0034134885
-
A modified projection algorithm for large strictly convex quadratic programs
-
Ruggiero V., Zanni L. A modified projection algorithm for large strictly convex quadratic programs. J. Optim. Theory Appl. 104:2000;281-299.
-
(2000)
J. Optim. Theory Appl.
, vol.104
, pp. 281-299
-
-
Ruggiero, V.1
Zanni, L.2
-
27
-
-
0012540092
-
Variable projection methods for large convex quadratic programs
-
Trigiante D. (Ed.), Nova Science Publishers
-
Ruggiero V., Zanni L. Variable projection methods for large convex quadratic programs. Trigiante D. Recent Trends in Numerical Analysis. vol. 3:2000;299-313 Nova Science Publishers.
-
(2000)
Recent Trends in Numerical Analysis
, vol.3
, pp. 299-313
-
-
Ruggiero, V.1
Zanni, L.2
-
28
-
-
0012593164
-
-
pr_LOQO
-
A.J. Smola, pr_LOQO, www.kernel-machines.org/code/prloqo.tar.gz.
-
-
-
Smola, A.J.1
-
31
-
-
0012595689
-
-
Technical Report, Department of Mathematics, University of Modena and Reggio Emilia, Italy
-
G. Zanghirati, L. Zanni, The Variable Projection Methods for Large Quadratic Programs in Training Support Vector Machines, Technical Report, Department of Mathematics, University of Modena and Reggio Emilia, Italy, 2003.
-
(2003)
The Variable Projection Methods for Large Quadratic Programs in Training Support Vector Machines
-
-
Zanghirati, G.1
Zanni, L.2
|