메뉴 건너뛰기




Volumn 29, Issue 4 SPEC., 2003, Pages 535-551

A parallel solver for large quadratic programs in training support vector machines

Author keywords

Convex quadratic programs; Parallel computation; Pattern recognition; Projection type methods; Support vector machines

Indexed keywords

PATTERN RECOGNITION; PROBLEM SOLVING; QUADRATIC PROGRAMMING; VECTORS;

EID: 0037378238     PISSN: 01678191     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8191(03)00021-8     Document Type: Conference Paper
Times cited : (123)

References (31)
  • 2
    • 0021479943 scopus 로고
    • An O(n) algorithm for quadratic knapsack problems
    • Brucker P. An. O(n) algorithm for quadratic knapsack problems Oper. Res. Lett. 3:1984;163-166.
    • (1984) Oper. Res. Lett. , vol.3 , pp. 163-166
    • Brucker, P.1
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 2:1998;121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 0003819899 scopus 로고    scopus 로고
    • Technical Report 00-05, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
    • M.C. Ferris, T.S. Munson, Interior Point Methods for Massive Support Vector Machines, Technical Report 00-05, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
    • (2000) Interior Point Methods for Massive Support Vector Machines
    • Ferris, M.C.1    Munson, T.S.2
  • 6
    • 0024754737 scopus 로고
    • Performance of parallel processors
    • Flatt H.P., Kennedy K. Performance of parallel processors. Parallel Comput. 12:1989;1-20.
    • (1989) Parallel Comput. , vol.12 , pp. 1-20
    • Flatt, H.P.1    Kennedy, K.2
  • 7
    • 0012538722 scopus 로고    scopus 로고
    • Technical Report 01-02, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
    • G. Fung, O.L. Mangasarian, Proximal Support Vector Machines Classifiers, Technical Report 01-02, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2001.
    • (2001) Proximal Support Vector Machines Classifiers
    • Fung, G.1    Mangasarian, O.L.2
  • 8
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C.J.C. Burges, A. Smola (Eds.), Cambridge, MA: MIT Press
    • Joachims T. Making large-scale SVM learning practical. Schölkopf B., Burges C.J.C., Smola A. Advances in Kernel Methods - Support Vector Learning. 1998;MIT Press, Cambridge, MA.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 10
    • 0003710385 scopus 로고    scopus 로고
    • Technical Report 99-03, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
    • Y.J. Lee, O.L. Mangasarian, SSVM: A Smooth Support Vector Machines, Technical Report 99-03, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 1999.
    • (1999) SSVM: A Smooth Support Vector Machines
    • Lee, Y.J.1    Mangasarian, O.L.2
  • 11
    • 0012487218 scopus 로고    scopus 로고
    • Technical Report 00-07, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
    • Y.J. Lee, O.L. Mangasarian, RSVM: Reduced Support Vector Machines, Technical Report 00-07, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
    • (2000) RSVM: Reduced Support Vector Machines
    • Lee, Y.J.1    Mangasarian, O.L.2
  • 12
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Lin C.J. On the convergence of the decomposition method for support vector machines. IEEE Trans. Neural Networks. 12:2001;1288-1298.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 1288-1298
    • Lin, C.J.1
  • 13
    • 0038178786 scopus 로고    scopus 로고
    • Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
    • C.J. Lin, Linear Convergence of a Decomposition Method for Support Vector Machines, Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan, 2002.
    • (2002) Linear Convergence of a Decomposition Method for Support Vector Machines
    • Lin, C.J.1
  • 14
  • 15
    • 0004229033 scopus 로고    scopus 로고
    • Technical Report 00-04, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
    • O.L. Mangasarian, D.R. Musicant, Active Support Vector Machine Classification, Technical Report 00-04, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
    • (2000) Active Support Vector Machine Classification
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 16
    • 0003408791 scopus 로고    scopus 로고
    • Technical Report 00-06, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
    • O.L. Mangasarian, D.R. Musicant, Lagrangian Support Vector Machines, Technical Report 00-06, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.
    • (2000) Lagrangian Support Vector Machines
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 20
    • 0026835468 scopus 로고
    • Massively parallel algorithms for single constrained convex programs
    • Nielsen S.N., Zenios S.A. Massively parallel algorithms for single constrained convex programs. ORSA J. Comput. 4:1992;166-181.
    • (1992) ORSA J. Comput. , vol.4 , pp. 166-181
    • Nielsen, S.N.1    Zenios, S.A.2
  • 21
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines
    • J. Principe, L. Giles, N. Morgan, E. Wilson, (Eds.), Amelia Island, FL
    • E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in: J. Principe, L. Giles, N. Morgan, E. Wilson, (Eds.), Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL, 1997, pp. 276-285.
    • (1997) Proceedings of the IEEE Workshop on Neural Networks for Signal Processing , pp. 276-285
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 22
    • 0000859664 scopus 로고
    • An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
    • Pardalos P.M., Kovoor N. An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Math. Prog. 46:1990;321-328.
    • (1990) Math. Prog. , vol.46 , pp. 321-328
    • Pardalos, P.M.1    Kovoor, N.2
  • 23
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, A. Smola (Eds.), Cambridge, MA: MIT Press
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. Schölkopf B., Burges C., Smola A. Advances in Kernel Methods - Support Vector Learning. 1998;MIT Press, Cambridge, MA.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.C.1
  • 24
    • 84898983292 scopus 로고    scopus 로고
    • Using analytic QP and sparseness to speed training of support vector machines
    • M.S. Kearns, S.A. Solla, Cohn D.A. (Eds.), Cambridge, Mass: MIT Press
    • Platt J.C. Using analytic QP and sparseness to speed training of support vector machines. Kearns M.S., Solla S.A., Cohn D.A. Advances in Neural Information Processing Systems. vol. 11:1999;MIT Press, Cambridge, Mass.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Platt, J.C.1
  • 25
    • 84870574117 scopus 로고    scopus 로고
    • On the efficiency of splitting and projection methods for large strictly convex quadratic programs
    • G. Di Pillo, F. Giannessi (Eds.), Kluwer Academic Publishers
    • Ruggiero V., Zanni L. On the efficiency of splitting and projection methods for large strictly convex quadratic programs. Di Pillo G., Giannessi F. Nonlinear Optimization and Related Topics, Applied Optimization. vol. 36:1999;401-413 Kluwer Academic Publishers.
    • (1999) Nonlinear Optimization and Related Topics, Applied Optimization , vol.36 , pp. 401-413
    • Ruggiero, V.1    Zanni, L.2
  • 26
    • 0034134885 scopus 로고    scopus 로고
    • A modified projection algorithm for large strictly convex quadratic programs
    • Ruggiero V., Zanni L. A modified projection algorithm for large strictly convex quadratic programs. J. Optim. Theory Appl. 104:2000;281-299.
    • (2000) J. Optim. Theory Appl. , vol.104 , pp. 281-299
    • Ruggiero, V.1    Zanni, L.2
  • 27
    • 0012540092 scopus 로고    scopus 로고
    • Variable projection methods for large convex quadratic programs
    • Trigiante D. (Ed.), Nova Science Publishers
    • Ruggiero V., Zanni L. Variable projection methods for large convex quadratic programs. Trigiante D. Recent Trends in Numerical Analysis. vol. 3:2000;299-313 Nova Science Publishers.
    • (2000) Recent Trends in Numerical Analysis , vol.3 , pp. 299-313
    • Ruggiero, V.1    Zanni, L.2
  • 28
    • 0012593164 scopus 로고    scopus 로고
    • pr_LOQO
    • A.J. Smola, pr_LOQO, www.kernel-machines.org/code/prloqo.tar.gz.
    • Smola, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.