메뉴 건너뛰기




Volumn 101, Issue , 2013, Pages 59-67

Sphere Support Vector Machines for large classification tasks

Author keywords

Classification; Core Vector Machines; Large datasets; Minimum enclosing ball; Support Vector Machines

Indexed keywords

CLASSIFICATION MODELS; CLASSIFICATION TASKS; CROSS VALIDATION; DATA SETS; FAST CLASSIFICATION; LARGE DATASETS; MINIMUM ENCLOSING BALL; NEAREST POINT; PARALLELIZATIONS; PROBABILISTIC TECHNIQUE; REAL DATA SETS; SPHERE SUPPORT VECTORS; STATE OF THE ART; SVM ALGORITHM; TRAINING PHASE; VECTOR MACHINES;

EID: 84868618603     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.07.025     Document Type: Article
Times cited : (33)

References (26)
  • 1
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press.
    • T. Joachims, Making large-scale support vector machine learning practical, in: Advances in Kernel Methods, MIT Press, 1999, pp. 169-184.
    • (1999) in: Advances in Kernel Methods , pp. 169-184
    • Joachims, T.1
  • 5
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines. fast SVM training on very large data sets
    • Tsang I.W., Kwok J.T., Cheung P.-M. Core vector machines. fast SVM training on very large data sets. J. Mach. Learn. Res. 2005, 6:363-392.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 8
    • 0003120218 scopus 로고    scopus 로고
    • Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines
    • Schölkopf, Burges, and Smola, Eds. Cambridge, MA: MIT Press.
    • J. C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, in Advances in Kernel Method: Support Vector Learning, Schölkopf, Burges, and Smola, Eds. Cambridge, MA: MIT Press, 1998, pp. 185-208.
    • (1998) in Advances in Kernel Method: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 9
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover T.M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 1965, 326-334.
    • (1965) IEEE Trans. Electron. Comput. , pp. 326-334
    • Cover, T.M.1
  • 11
    • 0038647819 scopus 로고    scopus 로고
    • An iterative algorithm learning the maximal margin classifier
    • Franc V., Hlaváč V. An iterative algorithm learning the maximal margin classifier. Pattern Recognition 2003, 36:1985-1996.
    • (2003) Pattern Recognition , vol.36 , pp. 1985-1996
    • Franc, V.1    Hlaváč, V.2
  • 13
    • 33646516358 scopus 로고    scopus 로고
    • A geometric approach to support vector machine (SVM) classification
    • Mavroforakis M.E., Theodoridis S. A geometric approach to support vector machine (SVM) classification. IEEE Trans. Neural Networks 2006, 17:671-682.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 671-682
    • Mavroforakis, M.E.1    Theodoridis, S.2
  • 22
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • Varma S., Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 2006, 7:91.
    • (2006) BMC Bioinformatics , vol.7 , pp. 91
    • Varma, S.1    Simon, R.2
  • 23
    • 84868629724 scopus 로고    scopus 로고
    • Error Estimation and Model Selection, Ph.D. Thesis, Technische Universität Berlin
    • T. Scheffer, Error Estimation and Model Selection, Ph.D. Thesis, Technische Universität Berlin, 1999.
    • (1999)
    • Scheffer, T.1
  • 24
    • 33847169137 scopus 로고    scopus 로고
    • Comments on the core vector machines. fast svm training on very large data sets
    • Loosli G., Canu S. Comments on the core vector machines. fast svm training on very large data sets. J. Mach. Learn. Res. 2007, 8:291-301.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 291-301
    • Loosli, G.1    Canu, S.2
  • 25
    • 84868629721 scopus 로고    scopus 로고
    • Authors' Reply to the "Comments on the core vector machines: fast SVM training on very large data sets"
    • I.W. Tsang, J.T. Kwok, Authors' Reply to the "Comments on the core vector machines: fast SVM training on very large data sets", 2007.
    • (2007)
    • Tsang, I.W.1    Kwok, J.T.2
  • 26
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than "exact" for interval estimation of binomial proportions
    • Agresti A., Coull B.A. Approximate is better than "exact" for interval estimation of binomial proportions. Am. Stat. 1998, 52:119-126.
    • (1998) Am. Stat. , vol.52 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.