메뉴 건너뛰기




Volumn 10, Issue , 2013, Pages 14-24

Modeling and optimization of Fischer-Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm

Author keywords

Artificial neural network; Catalyst; Fischer Tropsch synthesis; Genetic algorithm

Indexed keywords

CORRELATION COEFFICIENT; DECISION PARAMETERS; ESTIMATION TECHNIQUES; FISCHER-TROPSCH PROCESS; GAS CONVERSION; INPUT PARAMETER; MODELING AND OPTIMIZATION; MOLAR PERCENTAGE; NEURAL NETWORKS AND GENETIC ALGORITHMS; OPERATING PRESSURE; OPERATION TIME; OPERATIONAL PARAMETERS; OPTIMUM VALUE; TRIAL AND ERROR;

EID: 84870367329     PISSN: 18755100     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jngse.2012.09.001     Document Type: Article
Times cited : (53)

References (41)
  • 1
    • 14944375687 scopus 로고    scopus 로고
    • Regression model for bearing capacity of a square footing on reinforced pond ash
    • Bera A.K., Ghosh A., Ghosh A. Regression model for bearing capacity of a square footing on reinforced pond ash. Geotex. Geomemb. 2005, 23:261.
    • (2005) Geotex. Geomemb. , vol.23 , pp. 261
    • Bera, A.K.1    Ghosh, A.2    Ghosh, A.3
  • 4
    • 79951670418 scopus 로고    scopus 로고
    • Effect of the activation atmosphere on the activity of Fe catalysts supported on SBA-15 in the Fischer-Tropsch synthesis
    • Cano L.A., Cagnoli M.V., Bengoa J.F., Alvarez A.M., Marchetti S.G. Effect of the activation atmosphere on the activity of Fe catalysts supported on SBA-15 in the Fischer-Tropsch synthesis. J. Catal. 2011, 278:310-320.
    • (2011) J. Catal. , vol.278 , pp. 310-320
    • Cano, L.A.1    Cagnoli, M.V.2    Bengoa, J.F.3    Alvarez, A.M.4    Marchetti, S.G.5
  • 7
    • 0242667612 scopus 로고    scopus 로고
    • Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network
    • Genel K., Kurnaz S.C., Durman M. Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network. Mater. Sci. Eng. A 2003, 363:203-210.
    • (2003) Mater. Sci. Eng. A , vol.363 , pp. 203-210
    • Genel, K.1    Kurnaz, S.C.2    Durman, M.3
  • 8
    • 3042772204 scopus 로고    scopus 로고
    • Application of artificial neural network for predicting strain-life fatigue properties of steel on the basis of tensile tests
    • Genel K. Application of artificial neural network for predicting strain-life fatigue properties of steel on the basis of tensile tests. Int. J. Fatigue 2004, 26:1027-1035.
    • (2004) Int. J. Fatigue , vol.26 , pp. 1027-1035
    • Genel, K.1
  • 9
    • 74649085479 scopus 로고    scopus 로고
    • Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks
    • Gyurova L.A., Miniño-Justel P., Schlarb A.K. Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks. Wear 2010, 268:708-714.
    • (2010) Wear , vol.268 , pp. 708-714
    • Gyurova, L.A.1    Miniño-Justel, P.2    Schlarb, A.K.3
  • 10
    • 79952484326 scopus 로고    scopus 로고
    • Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites
    • Gyurova L.A., Friedrich K. Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites. Tribol. Int. 2011, 44:603-609.
    • (2011) Tribol. Int. , vol.44 , pp. 603-609
    • Gyurova, L.A.1    Friedrich, K.2
  • 12
    • 0028320021 scopus 로고
    • Developing practical neural network applications using back-propagation
    • Hegazy T., Moselhi O., Fazio P. Developing practical neural network applications using back-propagation. Microcomput. Civ. Eng. 1994, 9:145-459.
    • (1994) Microcomput. Civ. Eng. , vol.9 , pp. 145-459
    • Hegazy, T.1    Moselhi, O.2    Fazio, P.3
  • 14
    • 0037207802 scopus 로고    scopus 로고
    • Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm
    • Huang K., Zhan X.L., Chen F.Q., Lu D.W. Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem. Eng. Sci. 2003, 58:81-87.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 81-87
    • Huang, K.1    Zhan, X.L.2    Chen, F.Q.3    Lu, D.W.4
  • 15
    • 0000090683 scopus 로고
    • Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts
    • Iglesia E., Soled S.L., Fiato R.A., Via G.H. Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts. J. Catal. 1993, 143:345.
    • (1993) J. Catal. , vol.143 , pp. 345
    • Iglesia, E.1    Soled, S.L.2    Fiato, R.A.3    Via, G.H.4
  • 16
    • 0034189862 scopus 로고    scopus 로고
    • Relationship of permeability, porosity and depth using an artificial neural network
    • Jamialahmadi M., Javadpour F.G. Relationship of permeability, porosity and depth using an artificial neural network. J. Pet. Sci. Eng. 2000, 26:235-239.
    • (2000) J. Pet. Sci. Eng. , vol.26 , pp. 235-239
    • Jamialahmadi, M.1    Javadpour, F.G.2
  • 17
    • 78650173316 scopus 로고    scopus 로고
    • Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis
    • Karaca H., Safonova O.V., Chambrey S., Fongarland P., Roussel P., GribovalConstant A., Lacroix M., Khodakov A.Y. Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis. J. Catal. 2011, 277:14-26.
    • (2011) J. Catal. , vol.277 , pp. 14-26
    • Karaca, H.1    Safonova, O.V.2    Chambrey, S.3    Fongarland, P.4    Roussel, P.5    GribovalConstant, A.6    Lacroix, M.7    Khodakov, A.Y.8
  • 19
    • 80053973599 scopus 로고    scopus 로고
    • Design of neural network for manipulating gas refinery sweetening regenerator column outputs
    • Koolivand Salooki M., Abedini R., Adib H., Koolivand H. Design of neural network for manipulating gas refinery sweetening regenerator column outputs. Sep. Purif. Technol. 2011, 82:1-9.
    • (2011) Sep. Purif. Technol. , vol.82 , pp. 1-9
    • Koolivand Salooki, M.1    Abedini, R.2    Adib, H.3    Koolivand, H.4
  • 20
    • 79951948571 scopus 로고    scopus 로고
    • Iron catalyst supported on carbon nanotubes for Fischer-Tropsch synthesis: effects of Mo promotion
    • Malek Abbaslou R.M., Soltan J., Dalai A.K. Iron catalyst supported on carbon nanotubes for Fischer-Tropsch synthesis: effects of Mo promotion. Fuel 2011, 90:1139-1144.
    • (2011) Fuel , vol.90 , pp. 1139-1144
    • Malek Abbaslou, R.M.1    Soltan, J.2    Dalai, A.K.3
  • 24
    • 41549167747 scopus 로고    scopus 로고
    • Some thoughts on neural network modeling of micro abrasion-corrosion processes
    • Pai P.S., Mathew M.T., Stack M.M., Rocha L.A. Some thoughts on neural network modeling of micro abrasion-corrosion processes. Tribol. Int. 2008, 41:672-681.
    • (2008) Tribol. Int. , vol.41 , pp. 672-681
    • Pai, P.S.1    Mathew, M.T.2    Stack, M.M.3    Rocha, L.A.4
  • 25
    • 29244491457 scopus 로고    scopus 로고
    • Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine
    • Parlak A., Islamoglu Y., Yasar H., Egrisogut A. Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Appl. Therm. Eng. 2006, 26:824-828.
    • (2006) Appl. Therm. Eng. , vol.26 , pp. 824-828
    • Parlak, A.1    Islamoglu, Y.2    Yasar, H.3    Egrisogut, A.4
  • 26
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 1990, 247:978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 27
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proc. IEEE 1990, 78:1481-1497.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 28
    • 34548671418 scopus 로고    scopus 로고
    • Design of neural networks using genetic algorithm for the permeability estimation of the reservoir
    • Saemi M., Ahmadi M., Varjani A.Y. Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. J. Pet. Sci. Eng. 2007, 59:97-105.
    • (2007) J. Pet. Sci. Eng. , vol.59 , pp. 97-105
    • Saemi, M.1    Ahmadi, M.2    Varjani, A.Y.3
  • 29
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaiian stream using rating curves and neural networks
    • Sahoo G.B., Ray C. Flow forecasting for a Hawaiian stream using rating curves and neural networks. J. Hydrology 2006, 317:63-80.
    • (2006) J. Hydrology , vol.317 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 30
    • 79953071733 scopus 로고    scopus 로고
    • Designing a neural network for closed thermosyphon with nano fluid using a genetic algorithm
    • Salehi H., ZeinaliHeris S., Koolivand Salooki M., Noei S.H. Designing a neural network for closed thermosyphon with nano fluid using a genetic algorithm. Braz J. Chem. Eng. 2011, 28:157-168.
    • (2011) Braz J. Chem. Eng. , vol.28 , pp. 157-168
    • Salehi, H.1    ZeinaliHeris, S.2    Koolivand Salooki, M.3    Noei, S.H.4
  • 32
    • 0040315103 scopus 로고    scopus 로고
    • An example of the use of neural computing techniques in materials science: the modeling of fatigue thresholds in Ni-base super alloys
    • Schooling J.M., Brown M., Reed P.A.S. An example of the use of neural computing techniques in materials science: the modeling of fatigue thresholds in Ni-base super alloys. Mater. Sci. Eng. A 1999, 260:222-239.
    • (1999) Mater. Sci. Eng. A , vol.260 , pp. 222-239
    • Schooling, J.M.1    Brown, M.2    Reed, P.A.S.3
  • 34
    • 60749084955 scopus 로고    scopus 로고
    • Local and long range order in promoted iron-based Fischer-Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study
    • Smit E.D., Bealea A.M., Nikitenko S., Weckhuysen B.M. Local and long range order in promoted iron-based Fischer-Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study. J. Catal. 2009, 262:244-256.
    • (2009) J. Catal. , vol.262 , pp. 244-256
    • Smit, E.D.1    Bealea, A.M.2    Nikitenko, S.3    Weckhuysen, B.M.4
  • 35
    • 0031995137 scopus 로고    scopus 로고
    • A comparison between single and combined back propagation neural networks in the prediction of turnover
    • Tchaban T., Griffin J.P., Taylor M.J. A comparison between single and combined back propagation neural networks in the prediction of turnover. Eng. Appl. Artif. Intel. 1998, 11:41-47.
    • (1998) Eng. Appl. Artif. Intel. , vol.11 , pp. 41-47
    • Tchaban, T.1    Griffin, J.P.2    Taylor, M.J.3
  • 38
    • 0030421740 scopus 로고    scopus 로고
    • Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network
    • Wang X., Luo R., Shao H. Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network. Proc. IEEE Conf. Decis. Control 1996, 2:1714-1719.
    • (1996) Proc. IEEE Conf. Decis. Control , vol.2 , pp. 1714-1719
    • Wang, X.1    Luo, R.2    Shao, H.3
  • 39
    • 33745331782 scopus 로고    scopus 로고
    • The use of sensitivity analysis and genetic algorithms for the management of catalyst emissions from oil refineries
    • Whitcombe J.M., Cropp R.A., Braddock R.D., Agranovski I.E. The use of sensitivity analysis and genetic algorithms for the management of catalyst emissions from oil refineries. Math. Comput. Model. 2006, 44:430-438.
    • (2006) Math. Comput. Model. , vol.44 , pp. 430-438
    • Whitcombe, J.M.1    Cropp, R.A.2    Braddock, R.D.3    Agranovski, I.E.4
  • 40
    • 56049120308 scopus 로고    scopus 로고
    • Application of artificial neural network to predict the friction factor of open channel flow
    • Yuhong Z., Wenxin H. Application of artificial neural network to predict the friction factor of open channel flow. Comm. Nonlinear Sci. Numer. Simulat. 2009, 14:2373-2378.
    • (2009) Comm. Nonlinear Sci. Numer. Simulat. , vol.14 , pp. 2373-2378
    • Yuhong, Z.1    Wenxin, H.2
  • 41
    • 0031996485 scopus 로고    scopus 로고
    • Neural computing in mechanics
    • Zeng P. Neural computing in mechanics. Appl. Mech. Rev. 1998, 51:173-197.
    • (1998) Appl. Mech. Rev. , vol.51 , pp. 173-197
    • Zeng, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.