-
1
-
-
84863986133
-
Functions of DNA methylation: Islands, start sites, gene bodies and beyond
-
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484-492.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 484-492
-
-
Jones, P.A.1
-
2
-
-
84874194072
-
DNA methylation: Roles in mammalian development
-
Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013; 14:204-220.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
3
-
-
84857467013
-
Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocytespecific heritable marks
-
Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocytespecific heritable marks. PLoS Genet 2012; 8:e1002440.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002440
-
-
Kobayashi, H.1
Sakurai, T.2
Imai, M.3
Takahashi, N.4
Fukuda, A.5
Yayoi, O.6
-
4
-
-
84655164284
-
De novo DNA methylation: A germ cell perspective
-
Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet 2012; 28:33-42.
-
(2012)
Trends Genet
, vol.28
, pp. 33-42
-
-
Smallwood, S.A.1
Kelsey, G.2
-
5
-
-
80052473600
-
Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development
-
Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, et al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 2011; 21:1332-1342.
-
(2011)
Cell Res
, vol.21
, pp. 1332-1342
-
-
Ruzov, A.1
Tsenkina, Y.2
Serio, A.3
Dudnakova, T.4
Fletcher, J.5
Bai, Y.6
-
6
-
-
84892763878
-
Reversing DNA methylation: Mechanisms, genomics, and biological functions
-
Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014; 156:45-68.
-
(2014)
Cell
, vol.156
, pp. 45-68
-
-
Wu, H.1
Zhang, Y.2
-
7
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009; 324:929-930.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
8
-
-
84878260646
-
TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription
-
Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 2013; 14:341-356.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
Aravind, L.2
Rao, A.3
-
9
-
-
84876794613
-
5-Hydroxymethylcytosine and its potential roles in development and cancer
-
Pfeifer GP, Kadam S, Jin S-G. 5-Hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin 2013; 6:10.
-
(2013)
Epigenetics Chromatin
, vol.6
, pp. 10
-
-
Pfeifer, G.P.1
Kadam, S.2
Jin, S.-G.3
-
10
-
-
78650826181
-
Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
-
Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010; 5:e15367.
-
(2010)
PLoS One
, vol.5
, pp. e15367
-
-
Globisch, D.1
Münzel, M.2
Müller, M.3
Michalakis, S.4
Wagner, M.5
Koch, S.6
-
11
-
-
84857891830
-
Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes
-
Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, et al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 2012; 22:467-477.
-
(2012)
Genome Res
, vol.22
, pp. 467-477
-
-
Nestor, C.E.1
Ottaviano, R.2
Reddington, J.3
Sproul, D.4
Reinhardt, D.5
Dunican, D.6
-
12
-
-
79959431845
-
Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain
-
Frauer C, Hoffmann T, Bultmann S, Casa V, Cardoso MC, Antes I, et al. Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS One 2011; 6:e21306.
-
(2011)
PLoS One
, vol.6
, pp. e21306
-
-
Frauer, C.1
Hoffmann, T.2
Bultmann, S.3
Casa, V.4
Cardoso, M.C.5
Antes, I.6
-
13
-
-
84871563384
-
MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system
-
Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 2012; 151: 1417-1430.
-
(2012)
Cell
, vol.151
, pp. 1417-1430
-
-
Mellén, M.1
Ayata, P.2
Dewell, S.3
Kriaucionis, S.4
Heintz, N.5
-
14
-
-
84901950311
-
Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2
-
Zhou T, Xiong J, Wang M, Yang N, Wong J, Zhu B, et al. Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2. Mol Cell 2014; 54:879-886.
-
(2014)
Mol Cell
, vol.54
, pp. 879-886
-
-
Zhou, T.1
Xiong, J.2
Wang, M.3
Yang, N.4
Wong, J.5
Zhu, B.6
-
15
-
-
84945303832
-
Zebrafish as a model to study the role of DNA methylation in environmental toxicology
-
Epub ahead of print
-
Kamstra JH, Aleström P, Kooter JM, Legler J. Zebrafish as a model to study the role of DNA methylation in environmental toxicology. Environ Sci Pollut Res Int 2014 [Epub ahead of print]; DOI: 10.1007/s11356-014-3466-7.
-
(2014)
Environ Sci Pollut Res Int
-
-
Kamstra, J.H.1
Aleström, P.2
Kooter, J.M.3
Legler, J.4
-
16
-
-
84877696605
-
Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos
-
Jiang L, Zhang J, Wang J-J, Wang L, Zhang L, Li G, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 2013; 153:773-784.
-
(2013)
Cell
, vol.153
, pp. 773-784
-
-
Jiang, L.1
Zhang, J.2
Wang, J.-J.3
Wang, L.4
Zhang, L.5
Li, G.6
-
17
-
-
4544291383
-
Global changes in genomic methylation levels during early development of the zebrafish embryo
-
Mhanni AA, McGowan RA. Global changes in genomic methylation levels during early development of the zebrafish embryo. Dev Genes Evol 2004; 214:412-417.
-
(2004)
Dev Genes Evol
, vol.214
, pp. 412-417
-
-
Mhanni, A.A.1
McGowan, R.A.2
-
18
-
-
84877711740
-
Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern
-
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 2013; 153: 759-772.
-
(2013)
Cell
, vol.153
, pp. 759-772
-
-
Potok, M.E.1
Nix, D.A.2
Parnell, T.J.3
Cairns, B.R.4
-
19
-
-
84864936117
-
Developmental features of DNA methylation during activation of the embryonic zebrafish genome
-
Andersen IS, Reiner AH, Aanes H, Aleström P, Collas P. Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol 2012; 13:R65.
-
(2012)
Genome Biol
, vol.13
, pp. R65
-
-
Andersen, I.S.1
Reiner, A.H.2
Aanes, H.3
Aleström, P.4
Collas, P.5
-
20
-
-
84876312669
-
Epigenetic marking of the zebrafish developmental program
-
Andersen IS, Lindeman LC, Reiner AH, Østrup O, Aanes H, Aleström P, et al. Epigenetic marking of the zebrafish developmental program. Curr Top Dev Biol 2013; 104: 85-112.
-
(2013)
Curr Top Dev Biol
, vol.104
, pp. 85-112
-
-
Andersen, I.S.1
Lindeman, L.C.2
Reiner, A.H.3
Østrup, O.4
Aanes, H.5
Aleström, P.6
-
21
-
-
84860574634
-
5-Hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development
-
Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, et al. 5-Hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics 2012; 7:383-389.
-
(2012)
Epigenetics
, vol.7
, pp. 383-389
-
-
Almeida, R.D.1
Loose, M.2
Sottile, V.3
Matsa, E.4
Denning, C.5
Young, L.6
-
22
-
-
84894230669
-
TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model
-
Ge L, Zhang R-P, Wan F, Guo D-Y, Wang P, Xiang L-X, et al. TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model. Mol Cell Biol 2014; 34: 989-1002.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 989-1002
-
-
Ge, L.1
Zhang, R.-P.2
Wan, F.3
Guo, D.-Y.4
Wang, P.5
Xiang, L.-X.6
-
23
-
-
84863341417
-
Reversal of cocaine-conditioned place preference through methyl supplementation in mice: Altering global DNA methylation in the prefrontal cortex
-
Tian W, Zhao M, Li M, Song T, Zhang M, Quan L, et al. Reversal of cocaine-conditioned place preference through methyl supplementation in mice: altering global DNA methylation in the prefrontal cortex. PLoS One 2012; 7:e33435.
-
(2012)
PLoS One
, vol.7
, pp. e33435
-
-
Tian, W.1
Zhao, M.2
Li, M.3
Song, T.4
Zhang, M.5
Quan, L.6
-
24
-
-
0029045033
-
Stages of embryonic development of the zebrafish
-
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995; 203:253-310.
-
(1995)
Dev Dyn
, vol.203
, pp. 253-310
-
-
Kimmel, C.B.1
Ballard, W.W.2
Kimmel, S.R.3
Ullmann, B.4
Schilling, T.F.5
-
25
-
-
84929482604
-
-
OECD. Test No. 236: Fish embryo acute toxicity (FET) test
-
OECD. Test No. 236: Fish embryo acute toxicity (FET) test. 2013; Guide l (Test. Chem. Sect. 2):1-22.
-
(2013)
Guide L (Test. Chem. Sect. 2)
, pp. 1-22
-
-
-
26
-
-
0033557621
-
A role for DNA methylation in gastrulation and somite patterning
-
Martin CC, Laforest L, Akimenko MA, Ekker M. A role for DNA methylation in gastrulation and somite patterning. Dev Biol 1999; 206:189-205.
-
(1999)
Dev Biol
, vol.206
, pp. 189-205
-
-
Martin, C.C.1
Laforest, L.2
Akimenko, M.A.3
Ekker, M.4
-
27
-
-
12244279345
-
Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry
-
Song L, James SR, Kazim L, Karpf AR. Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 2005; 77:504-510.
-
(2005)
Anal Chem
, vol.77
, pp. 504-510
-
-
Song, L.1
James, S.R.2
Kazim, L.3
Karpf, A.R.4
-
28
-
-
0036206395
-
Dose-response modeling of continuous endpoints
-
Slob W. Dose-response modeling of continuous endpoints. Toxicol Sci 2002; 66:298-312.
-
(2002)
Toxicol Sci
, vol.66
, pp. 298-312
-
-
Slob, W.1
-
29
-
-
34447282194
-
Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: Analytical technique, reference values and determinants in healthy subjects
-
Kok RM, Smith DEC, Barto R, Spijkerman AMW, Teerlink T, Gellekink HJ, et al. Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects. Clin Chem Lab Med 2007; 45: 903-911.
-
(2007)
Clin Chem Lab Med
, vol.45
, pp. 903-911
-
-
Kok, R.M.1
Smith, D.E.C.2
Barto, R.3
Spijkerman, A.M.W.4
Teerlink, T.5
Gellekink, H.J.6
-
30
-
-
40649084031
-
Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography
-
Rozhon W, Baubec T, Mayerhofer J, Mittelsten Scheid O, Jonak C. Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography. Anal Biochem 2008; 375:354-360.
-
(2008)
Anal Biochem
, vol.375
, pp. 354-360
-
-
Rozhon, W.1
Baubec, T.2
Mayerhofer, J.3
Mittelsten Scheid, O.4
Jonak, C.5
-
31
-
-
80053348585
-
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
-
Gu T-P, Guo F, Yang H, Wu H-P, Xu G-F, Liu W, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011; 477:606-610.
-
(2011)
Nature
, vol.477
, pp. 606-610
-
-
Gu, T.-P.1
Guo, F.2
Yang, H.3
Wu, H.-P.4
Xu, G.-F.5
Liu, W.6
-
32
-
-
79952763586
-
Reprogramming of the paternal genome upon fertilization involves genomewide oxidation of 5-methylcytosine
-
Iqbal K, Jin S-G, Pfeifer GP, Szabó PE. Reprogramming of the paternal genome upon fertilization involves genomewide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 2011; 108:3642-3647.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 3642-3647
-
-
Iqbal, K.1
Jin, S.-G.2
Pfeifer, G.P.3
Szabó, P.E.4
-
33
-
-
80051555960
-
Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition
-
Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SGP, et al. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 2011; 21: 1328-1338.
-
(2011)
Genome Res
, vol.21
, pp. 1328-1338
-
-
Aanes, H.1
Winata, C.L.2
Lin, C.H.3
Chen, J.P.4
Srinivasan, K.G.5
Sgp, L.6
-
34
-
-
84901706067
-
Uracil-DNA Glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo
-
Wu D, Chen L, Sun Q, Wu X, Jia S, Meng A. Uracil-DNA Glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo. J Biol Chem 2014; 289:15463-15473.
-
(2014)
J Biol Chem
, vol.289
, pp. 15463-15473
-
-
Wu, D.1
Chen, L.2
Sun, Q.3
Wu, X.4
Jia, S.5
Meng, A.6
-
35
-
-
0031768690
-
Mitochondrial DNA in mammalian reproduction
-
Cummins J. Mitochondrial DNA in mammalian reproduction. Rev Reprod 1998; 3:172-182.
-
(1998)
Rev Reprod
, vol.3
, pp. 172-182
-
-
Cummins, J.1
-
36
-
-
84893557019
-
Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain
-
Guo JU, Szulwach KE, Su Y, Li Y, Yao B, Xu Z, et al. Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain. Front Biol (Beijing) 2014; 9:66-74.
-
(2014)
Front Biol (Beijing)
, vol.9
, pp. 66-74
-
-
Guo, J.U.1
Szulwach, K.E.2
Su, Y.3
Li, Y.4
Yao, B.5
Xu, Z.6
-
37
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5- formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5- formylcytosine and 5-carboxylcytosine. Science 2011; 333: 1300-1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
Collins, L.B.5
Swenberg, J.A.6
-
38
-
-
79960127277
-
Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes
-
Kinney SM, Chin HG, Vaisvila R, Bitinaite J, Zheng Y, Esteve P-O, et al. Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 2011; 286:24685-24693.
-
(2011)
J Biol Chem
, vol.286
, pp. 24685-24693
-
-
Kinney, S.M.1
Chin, H.G.2
Vaisvila, R.3
Bitinaite, J.4
Zheng, Y.5
Esteve, P.-O.6
-
39
-
-
84864129535
-
Distribution of 5-hydroxymethylcytosine in different human tissues
-
Li W, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011; 2011: 870726.
-
(2011)
J Nucleic Acids
, vol.2011
, pp. 870726
-
-
Li, W.1
Liu, M.2
-
40
-
-
77954842819
-
Quantification of the sixth DNA base hydroxymethylcytosine in the brain
-
Münzel M, Globisch D, Brückl T, Wagner M, Welzmiller V, Michalakis S, et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 2010; 49:5375-5377.
-
(2010)
Angew Chem Int Ed Engl
, vol.49
, pp. 5375-5377
-
-
Münzel, M.1
Globisch, D.2
Brückl, T.3
Wagner, M.4
Welzmiller, V.5
Michalakis, S.6
-
41
-
-
84885012678
-
Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine
-
Booth MJ, Ost TWB, Beraldi D, Bell NM, Branco MR, Reik W, et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 2013; 8:1841-1851.
-
(2013)
Nat Protoc
, vol.8
, pp. 1841-1851
-
-
Booth, M.J.1
Twb, O.2
Beraldi, D.3
Bell, N.M.4
Branco, M.R.5
Reik, W.6
-
42
-
-
57649196594
-
DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45
-
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008; 135: 1201-1212.
-
(2008)
Cell
, vol.135
, pp. 1201-1212
-
-
Rai, K.1
Huggins, I.J.2
James, S.R.3
Karpf, A.R.4
Jones, D.A.5
Cairns, B.R.6
-
43
-
-
43949136445
-
Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine
-
Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008; 123:8-13.
-
(2008)
Int J Cancer
, vol.123
, pp. 8-13
-
-
Stresemann, C.1
Lyko, F.2
-
44
-
-
9744251005
-
Biochemistry and biology of mammalian DNA methyltransferases
-
Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004; 61:2571-2587.
-
(2004)
Cell Mol Life Sci
, vol.61
, pp. 2571-2587
-
-
Hermann, A.1
Gowher, H.2
Jeltsch, A.3
-
45
-
-
79958746640
-
C5-DNA methyltransferase inhibitors: From screening to effects on zebrafish embryo development
-
Ceccaldi A, Rajavelu A, Champion C, Rampon C, Jurkowska R, Jankevicius G, et al. C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Chembiochem 2011; 12:1337-1345.
-
(2011)
Chembiochem
, vol.12
, pp. 1337-1345
-
-
Ceccaldi, A.1
Rajavelu, A.2
Champion, C.3
Rampon, C.4
Jurkowska, R.5
Jankevicius, G.6
|