-
1
-
-
22844457491
-
DNA methylation and human disease
-
Robertson, K. D. DNA methylation and human disease. Nature Reviews Genetics 6, 597-610, doi:10.1038/nrg1655 (2005).
-
(2005)
Nature Reviews Genetics
, vol.6
, pp. 597-610
-
-
Robertson, K.D.1
-
2
-
-
80053144962
-
A decade of exploring the cancer epigenome - Biological and translational implications
-
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 11, 726-734, doi:10.1038/ nrc3130 (2011).
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 726-734
-
-
Baylin, S.B.1
Jones, P.A.2
-
3
-
-
43749098985
-
DNA methylation landscapes: Provocative insights from epigenomics
-
Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature reviews. Genetics 9, 465-476, doi:10.1038/nrg2341 (2008).
-
(2008)
Nature Reviews. Genetics
, vol.9
, pp. 465-476
-
-
Suzuki, M.M.1
Bird, A.2
-
4
-
-
79960064353
-
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
-
Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20,11-24 (2011).
-
(2011)
Cancer Cell
, vol.20
, pp. 11-24
-
-
Moran-Crusio, K.1
-
5
-
-
84928710876
-
Inhibition of TET2 Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine Disturbs Myelopoiesis and Granulo-Monocytic Differentiation
-
Pronier, E. et al. Inhibition of TET2 Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine Disturbs Myelopoiesis and Granulo-Monocytic Differentiation. Blood 116, 669-669 (2010).
-
(2010)
Blood
, vol.116
, pp. 669-669
-
-
Pronier, E.1
-
6
-
-
67649876132
-
Acquired mutations in TET2 are common in myelodysplastic syndromes
-
Langemeijer, S. M. C. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nature Genetics 41, 838-U102, doi:10.1038/ng.391 (2009).
-
(2009)
Nature Genetics
, vol.41
, pp. 838-U102
-
-
Langemeijer, S.M.C.1
-
7
-
-
80053545678
-
Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy
-
Fathi, A. T. & Abdel-Wahab, O. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Advances in hematology 2012, 469592 (2012).
-
(2012)
Advances in Hematology
, vol.2012
, pp. 469592
-
-
Fathi, A.T.1
Abdel-Wahab, O.2
-
8
-
-
48749122610
-
Epigenetics in acute myeloid leukemia
-
Plass, C., Oakes, C., Blum, W. & Marcucci, G. Epigenetics in acute myeloid leukemia. Seminars in Oncology 35, 378-387, doi:10.1053/j.seminoncol.2008.04.008 (2008).
-
(2008)
Seminars in Oncology
, vol.35
, pp. 378-387
-
-
Plass, C.1
Oakes, C.2
Blum, W.3
Marcucci, G.4
-
9
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain
-
Kriaucionis, S. & Heintz, N. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science 324,929-930, doi:10.1126/ science.1169786 (2009).
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
10
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani, M. et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 324,930-935, doi:10.1126/ science.1170116 (2009).
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
-
11
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5- carboxylcytosine
-
Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5- carboxylcytosine. Science 333, 1300-1303, doi:10.1126/science.1210597 (2011).
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
-
12
-
-
79956323623
-
Dynamic regulation of5-hydroxymethylcytosine in mouse ES cells and during differentiation
-
Ficz, G. et al. Dynamic regulation of5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398-U589, doi:10.1038/nature10008 (2011).
-
(2011)
Nature
, vol.473
, pp. 398-U589
-
-
Ficz, G.1
-
13
-
-
84874771985
-
Dynamic readers for 5-(Hydroxy) methylcytosine and its oxidized derivatives
-
Spruijt, C. G. et al. Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives. Cell 152, 1146-1159, doi:10.1016/j.cell.2013.02.004 (2013).
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
-
14
-
-
84864722177
-
5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificityofRNA polymerase IItranscription
-
Kellinger, M. W. et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificityofRNA polymerase IItranscription. Nature Structural & Molecular Biology19, 831-833, doi:10.1038/nsmb.2346 (2012).
-
(2012)
Nature Structural & Molecular Biology
, vol.19
, pp. 831-833
-
-
Kellinger, M.W.1
-
15
-
-
84881476916
-
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
-
Blaschke, K. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222-1, doi:10.1038/nature12362 (2013).
-
(2013)
Nature
, vol.500
, pp. 222-231
-
-
Blaschke, K.1
-
16
-
-
77749302093
-
A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines
-
Hollenbach, P. W. et al. A Comparison of Azacitidine and Decitabine Activities in Acute Myeloid Leukemia Cell Lines. Flos One 5 doi:10.1371/journal.pone. 0009001 (2010).
-
(2010)
Flos One
, vol.5
-
-
Hollenbach, P.W.1
-
17
-
-
79952328162
-
Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines
-
Hagemann, S., Heil, O., Lyko, F. & Brueckner, B. Azacytidine and Decitabine Induce Gene-Specific and Non-Random DNA Demethylation in Human Cancer Cell Lines. Flos One 6, doi:10.1371/journal.pone.0017388 (2011).
-
(2011)
Flos One
, vol.6
-
-
Hagemann, S.1
Heil, O.2
Lyko, F.3
Brueckner, B.4
-
18
-
-
77955238361
-
Targeting of 5-aza-2′-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme
-
Patel, K. et al. Targeting of 5-aza-2′-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Research 38, 4313-4324, doi:10.1093/Nar/Gkq187 (2010).
-
(2010)
Nucleic Acids Research
, vol.38
, pp. 4313-4324
-
-
Patel, K.1
-
19
-
-
70350046301
-
OPINION RethinkinghowDNA methylation patterns are maintained
-
Jones, P. A. &Liang, G. OPINION RethinkinghowDNA methylation patterns are maintained. Nature Reviews Genetics 10, 805-811, doi:10.1038/nrg2651 (2009).
-
(2009)
Nature Reviews Genetics
, vol.10
, pp. 805-811
-
-
Jones, P.A.1
Liang, G.2
-
20
-
-
78650175023
-
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
-
Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839-843, doi:10.1038/nature09586.
-
Nature
, vol.468
, pp. 839-843
-
-
Ko, M.1
-
21
-
-
78650019179
-
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
-
Figueroa, M. E. et al. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell 18, 553-567, doi:10.1016/j. ccr.2010.11.015 (2010).
-
(2010)
Cancer Cell
, vol.18
, pp. 553-567
-
-
Figueroa, M.E.1
-
22
-
-
0037068379
-
5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy
-
Christman, J. K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483-5495, doi:10.1038/sj.onc.1205699 (2002).
-
(2002)
Oncogene
, vol.21
, pp. 5483-5495
-
-
Christman, J.K.1
-
23
-
-
43949136445
-
Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine
-
Stresemann, C. & Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer 123,8-13, doi:10.1002/ijc.23607 (2008).
-
(2008)
International Journal of Cancer
, vol.123
, pp. 8-13
-
-
Stresemann, C.1
Lyko, F.2
-
24
-
-
0017782474
-
Continuous growth anddifferentiation of human myeloid leukemic cells in suspension culture
-
Collins, S. J., Gallo, R. C. &Gallagher, R. E. Continuous growth anddifferentiation of human myeloid leukemic cells in suspension culture. Nature 270, 347-349, doi:10.1038/270347a0 (1977).
-
(1977)
Nature
, vol.270
, pp. 347-349
-
-
Collins, S.J.1
Gallo, R.C.2
Gallagher, R.E.3
-
25
-
-
0001718811
-
Terminal differentiation of human promyelocytic leukemia-cells induced by dimethyl-sulfoxide and other polar compounds
-
Collins, S. J., Ruscetti, F. W., Gallagher, R. E. & Gallo, R. C. Terminal differentiation of human promyelocytic leukemia-cells induced by dimethyl-sulfoxide and other polar compounds. Froceedings of the National Academy of Sciences of the United States of America 75, 2458-2462, doi:10.1073/ pnas.75.5.2458 (1978).
-
(1978)
Froceedings of the National Academy of Sciences of the United States of America
, vol.75
, pp. 2458-2462
-
-
Collins, S.J.1
Ruscetti, F.W.2
Gallagher, R.E.3
Gallo, R.C.4
-
26
-
-
34548529948
-
Phase i study ofdecitabine alone or in combination with valproic acid in acute myeloid leukemia
-
Blum, W. et al. Phase I study ofdecitabine alone or in combination with valproic acid in acute myeloid leukemia. Journal of Clinical Oncology 25, 3884-3891, doi:10.1200/jco.2006.09.4169 (2007).
-
(2007)
Journal of Clinical Oncology
, vol.25
, pp. 3884-3891
-
-
Blum, W.1
-
27
-
-
39749155114
-
Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS)
-
Cashen, A. F., Shah, A. K., Todt, L., Fisher, N. & DiPersio, J. Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Cancer Chemotherapy and Fharmacology 61, 759-766, doi:10.1007/s00280-007-0531-7 (2008).
-
(2008)
Cancer Chemotherapy and Fharmacology
, vol.61
, pp. 759-766
-
-
Cashen, A.F.1
Shah, A.K.2
Todt, L.3
Fisher, N.4
Dipersio, J.5
-
28
-
-
84912527399
-
Quantification of5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine fromthe blood of cancer patients by an enzyme-based immunoassay
-
Chowdhury, B., Cho, I.-H., Hahn, N. & Irudayaraj, J. Quantification of5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine fromthe blood of cancer patients by an enzyme-based immunoassay. Analytica Chimica Acta 852, 212-217, doi:10.1016/j.aca.2014.09.020 (2014).
-
(2014)
Analytica Chimica Acta
, vol.852
, pp. 212-217
-
-
Chowdhury, B.1
Cho, I.-H.2
Hahn, N.3
Irudayaraj, J.4
-
29
-
-
84863497603
-
A dynamic multi-compartmental model ofDNA methylation with demonstrable predictive value in hematological malignancies
-
McGovern, A. P., Powell, B. E. & Chevassut, T. J. T. A dynamic multi-compartmental model ofDNA methylation with demonstrable predictive value in hematological malignancies. Journal of Theoretical Biology 310,14-20, doi:10.1016/j.jtbi.2012.06.018 (2012).
-
(2012)
Journal of Theoretical Biology
, vol.310
, pp. 14-20
-
-
McGovern, A.P.1
Powell, B.E.2
Chevassut, T.J.T.3
-
30
-
-
52049102456
-
Evolution ofdecitabine development - Accomplishments, ongoing investigations, and future strategies
-
Jabbour, E., Issa, J.-P., Garcia-Manero, G. & Kantarjian, H. Evolution ofdecitabine development - Accomplishments, ongoing investigations, and future strategies. Cancer 112, 2341-2351, doi:10.1002/cncr.23463 (2008).
-
(2008)
Cancer
, vol.112
, pp. 2341-2351
-
-
Jabbour, E.1
Issa, J.-P.2
Garcia-Manero, G.3
Kantarjian, H.4
-
31
-
-
0018860957
-
Cellular-differentiation, cytidine analogsand dnamethylation
-
Jones, P. A. & Taylor, S. M. CELLULAR-DIFFERENTIATION, CYTIDINE ANALOGSAND DNAMETHYLATION. Cell 20,85-93, doi:10.1016/0092-8674 (80)90237-8 (1980).
-
(1980)
Cell
, vol.20
, pp. 85-93
-
-
Jones, P.A.1
Taylor, S.M.2
-
32
-
-
21844466446
-
Pharmacology of 5-Aza-2′-deoxycytidine (decitabine)
-
Momparler, R. L. Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Seminars in Hematology 42,S9-S16, doi:10.1053/j.seminhematol.2005.05.002 (2005).
-
(2005)
Seminars in Hematology
, vol.42
, pp. S9-S16
-
-
Momparler, R.L.1
-
33
-
-
1442277103
-
Activation of expression of p15, p73 and E-cadherin in leukemic cells by different concentrations of 5-aza-2′-deoxycytidine (decitabine)
-
Farinha, N. J. et al. Activation of expression of p15, p73 and E-cadherin in leukemic cells by different concentrations of 5-aza-2′-deoxycytidine (decitabine). Anticancer Research 24; 75-78: (2004).
-
(2004)
Anticancer Research
, vol.24
, pp. 75-78
-
-
Farinha, N.J.1
-
34
-
-
0034723255
-
Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression
-
Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B. & Herman, J. G. Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. Journal of Biological Chemistry 275, 2727-2732, doi:10.1074/jbc.275.4.2727 (2000).
-
(2000)
Journal of Biological Chemistry
, vol.275
, pp. 2727-2732
-
-
Graff, J.R.1
Gabrielson, E.2
Fujii, H.3
Baylin, S.B.4
Herman, J.G.5
-
35
-
-
0034326784
-
Reversal ofdrug resistance in human tumor xenografts by 2′ -deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter
-
Plumb, J. A., Strathdee, G., Sludden, J., Kaye, S. B. & Brown, R. Reversal ofdrug resistance in human tumor xenografts by 2′ -deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Research 60, 6039-6044 (2000).
-
(2000)
Cancer Research
, vol.60
, pp. 6039-6044
-
-
Plumb, J.A.1
Strathdee, G.2
Sludden, J.3
Kaye, S.B.4
Brown, R.5
-
36
-
-
0028787221
-
CDKN2 gene silencing in lung-cancer by DNA hypermethylation and kinetics ofp16(INK4) protein induction by 5-aza 2′ deoxycytidine
-
Otterson, G. A., Khleif, S. N., Chen, W. D., Coxon, A. B. & Kaye, F. J. CDKN2 gene silencing in lung-cancer by DNA hypermethylation and kinetics ofp16(INK4) protein induction by 5-aza 2′ deoxycytidine. Oncogene 11, 1211-1216 (1995).
-
(1995)
Oncogene
, vol.11
, pp. 1211-1216
-
-
Otterson, G.A.1
Khleif, S.N.2
Chen, W.D.3
Coxon, A.B.4
Kaye, F.J.5
-
37
-
-
84925283900
-
Quantitative determination ofdecitabine incorporation into DNA and its effect on mutation rates in human cancer cells
-
Oz, S. et al. Quantitative determination ofdecitabine incorporation into DNA and its effect on mutation rates in human cancer cells. Nucleic acids research 42, e152-e152, doi:10.1093/nar/gku775 (2014).
-
(2014)
Nucleic Acids Research
, vol.42
, pp. e152-e152
-
-
Oz, S.1
-
38
-
-
0035283201
-
Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia
-
Mizuno, S. et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97, 1172-1179 (2001).
-
(2001)
Blood
, vol.97
, pp. 1172-1179
-
-
Mizuno, S.1
-
39
-
-
18844397298
-
De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of5-aza-2′-deoxycytidine
-
Oka, M. et al. De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of5-aza-2′-deoxycytidine. Oncogene 24, 3091-3099, doi:10.1038/sj.onc.1208540 (2005).
-
(2005)
Oncogene
, vol.24
, pp. 3091-3099
-
-
Oka, M.1
-
40
-
-
18944383889
-
5-Aza-deoxycytidine induces selective degradation ofDNA methyltransferase 1 bya proteasomalpathwaythat requires the KEN box, bromo- adjacent homology domain, and nuclear localization signal
-
Ghoshal, K. et al. 5-Aza-deoxycytidine induces selective degradation ofDNA methyltransferase 1 bya proteasomalpathwaythat requires the KEN box, bromo- adjacent homology domain, and nuclear localization signal. Molecular and Cellular Biology 25, 4727-4741, doi:10.1128/mcb.25.11.4727-4741.2005 (2005).
-
(2005)
Molecular and Cellular Biology
, vol.25
, pp. 4727-4741
-
-
Ghoshal, K.1
-
41
-
-
79952258043
-
Nucleosomes Containing Methylated DNA Stabilize DNA Methyltransferases 3A/3B and Ensure Faithful Epigenetic Inheritance
-
Sharma, S., De Carvalho, D. D., Jeong, S., Jones, P. A. & Liang, G. Nucleosomes Containing Methylated DNA Stabilize DNA Methyltransferases 3A/3B and Ensure Faithful Epigenetic Inheritance. Flos Genetics 7, doi:10.1371/journal. pgen.1001286 (2011).
-
(2011)
Flos Genetics
, vol.7
-
-
Sharma, S.1
De Carvalho, D.D.2
Jeong, S.3
Jones, P.A.4
Liang, G.5
-
42
-
-
17644368221
-
A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns
-
Genereux, D. P., Miner, B. E., Bergstrom, C. T. & Laird, C. D. A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns. Froceedingsof the National Academy ofSciencesofthe United States of America 102, 5802-5807, doi:10.1073/pnas.0502036102 (2005).
-
(2005)
Froceedingsof the National Academy OfSciencesofthe United States of America
, vol.102
, pp. 5802-5807
-
-
Genereux, D.P.1
Miner, B.E.2
Bergstrom, C.T.3
Laird, C.D.4
-
43
-
-
33748501233
-
Stability and inheritance of somatic DNA methylation imprints
-
Sontag, L. B., Lorincz, M. C. & Georg Luebeck, E. Dynamics, stability and inheritance of somatic DNA methylation imprints. J Theor Biol 242,890-899, doi:10.1016/j.jtbi.2006.05.012 (2006).
-
(2006)
J Theor Biol
, vol.242
, pp. 890-899
-
-
Sontag, L.B.1
Lorincz, M.C.2
Luebeck, G.3
Dynamics, E.4
-
44
-
-
84884912247
-
Real-time dynamics ofmethyl-CpG-binding domain protein 3 and its role in DNA demethylation by fluorescence correlation spectroscopy
-
Cui, Y., Cho, I.-H., Chowdhury, B. & Irudayaraj, J. Real-time dynamics ofmethyl-CpG-binding domain protein 3 and its role in DNA demethylation by fluorescence correlation spectroscopy. Epigenetics 8, 1089-1100, doi:10.4161/ epi.25958 (2013).
-
(2013)
Epigenetics
, vol.8
, pp. 1089-1100
-
-
Cui, Y.1
Cho, I.-H.2
Chowdhury, B.3
Irudayaraj, J.4
-
46
-
-
35748946937
-
Fluorescence correlation spectroscopy in living cells
-
Kim, S. A., Heinze, K. G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nature Methods 4, 963-973, doi:10.1038/nmeth1104 (2007).
-
(2007)
Nature Methods
, vol.4
, pp. 963-973
-
-
Kim, S.A.1
Heinze, K.G.2
Schwille, P.3
-
47
-
-
84919779814
-
Second harmonic generation correlation spectroscopy for single molecule experiments
-
Second harmonic generation correlation spectroscopy for single molecule experiments, ACS Nano, 2014, 8(12): 12418-12427. http://dx.doi.org/10.1364/OE.21.027063.
-
(2014)
ACS Nano
, vol.8
, Issue.12
, pp. 12418-12427
-
-
-
48
-
-
84876721576
-
Probing site-exclusive binding of aqueous QDs and their organelle-dependent dynamics in live cells by single molecule spectroscopy
-
Probing site-exclusive binding of aqueous QDs and their organelle-dependent dynamics in live cells by single molecule spectroscopy, Analyst, 2013, 138: 2871-2876. DOI: HYPERLINK "http://dx.doi.org/10.1039/C3AN36906D" 10.1039/C3AN36906D.
-
(2013)
Analyst
, vol.138
, pp. 2871-2876
-
-
-
49
-
-
84928748974
-
Dissecting the behavior and function of MBD3 in DNA methylation homeostasis by single-molecule spectroscopy and microscopy
-
Cui, Y. & Irudayaraj, J. Dissecting the behavior and function of MBD3 in DNA methylation homeostasis by single-molecule spectroscopy and microscopy. Nucleic Acids Research, doi: 10.1093/nar/gkv098 (2015).
-
(2015)
Nucleic Acids Research
-
-
Cui, Y.1
Irudayaraj, J.2
-
50
-
-
34547842515
-
Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation
-
Schermelleh, L. et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Research 35, 4301-4312, doi:10.1093/nar/gkm432 (2007).
-
(2007)
Nucleic Acids Research
, vol.35
, pp. 4301-4312
-
-
Schermelleh, L.1
-
51
-
-
84877313553
-
Dissection ofcell cycle-dependent dynamics ofDnmt1 by FRAP and diffusion-coupled modeling
-
Schneider, K. et al. Dissection ofcell cycle-dependent dynamics ofDnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Research 41,4860-4876, doi:10.1093/nar/gkt191 (2013).
-
(2013)
Nucleic Acids Research
, vol.41
, pp. 4860-4876
-
-
Schneider, K.1
-
52
-
-
78649825211
-
Etal. TET1 is a DNA-bindingprotein thatmodulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine
-
Zhang, H. etal. TET1 is a DNA-bindingprotein thatmodulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Research 20, 1390-1393, doi:10.1038/cr.2010.156 (2010).
-
(2010)
Cell Research
, vol.20
, pp. 1390-1393
-
-
Zhang, H.1
-
53
-
-
84876944890
-
Quantification of 5-Methylcytosine and 5-Hydroxymethylcytosine in Genomic DNA from Hepatocellular Carcinoma Tissues by Capillary Hydrophilic-Interaction Liquid Chromatography/ Quadrupole TOF Mass Spectrometry
-
Chen, M.-L. et al. Quantification of 5-Methylcytosine and 5-Hydroxymethylcytosine in Genomic DNA from Hepatocellular Carcinoma Tissues by Capillary Hydrophilic-Interaction Liquid Chromatography/ Quadrupole TOF Mass Spectrometry. Clinical Chemistry 59, 824-832, doi:10.1373/clinchem.2012.193938 (2013).
-
(2013)
Clinical Chemistry
, vol.59
, pp. 824-832
-
-
Chen, M.-L.1
|