메뉴 건너뛰기




Volumn 84, Issue , 2015, Pages 631-657

ATP synthase

Author keywords

ATP synthesis; Chloroplasts; Cyanobacteria; FOF1 ATPase; Photosynthesis; Proton transfer

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE DERIVATIVE; CYTOCHROME B6F; DISULFIDE; F ATPASE; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; RAS PROTEIN; UNCLASSIFIED DRUG; V ATPASE; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATASE;

EID: 84928164455     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060614-034124     Document Type: Review
Times cited : (290)

References (166)
  • 1
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805-9
    • (2011) Science , vol.332 , pp. 805-809
    • Blankenship, R.E.1    Tiede, D.M.2    Barber, J.3    Brudvig, G.W.4    Fleming, G.5
  • 2
    • 84928163454 scopus 로고    scopus 로고
    • Structure and energy transfer in photosystems of oxygenic photosynthesis
    • Nelson N, Junge W. 2015. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84:659-83
    • (2015) Annu. Rev. Biochem. , vol.84 , pp. 659-683
    • Nelson, N.1    Junge, W.2
  • 3
    • 33646539981 scopus 로고
    • A soluble protein fraction required for coupling phosphorylation to oxidation in submitochondrial fragments of beef heart mitochondria
    • Pullman ME, Penefsky H, Racker E. 1958. A soluble protein fraction required for coupling phosphorylation to oxidation in submitochondrial fragments of beef heart mitochondria. Arch. Biochem. Biophys. 76:227-30
    • (1958) Arch. Biochem. Biophys. , vol.76 , pp. 227-230
    • Pullman, M.E.1    Penefsky, H.2    Racker, E.3
  • 4
    • 36949083936 scopus 로고
    • Coupling of photophosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism
    • Mitchell P. 1961. Coupling of photophosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144-48
    • (1961) Nature , vol.191 , pp. 144-148
    • Mitchell, P.1
  • 5
    • 0013942130 scopus 로고
    • Chemiosmotic coupling in oxidative and photosynthetic phosphorylation
    • Mitchell P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Physiol. Rev. 41:445-502
    • (1966) Physiol. Rev. , vol.41 , pp. 445-502
    • Mitchell, P.1
  • 6
    • 0035814819 scopus 로고    scopus 로고
    • Contribution of electric field (-) to steadystate transthylakoid proton motive force ( pmf ) in vitro and in vivo. Control of pmf parsing into and pH by ionic strength
    • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM. 2001. Contribution of electric field (-) to steadystate transthylakoid proton motive force ( pmf ) in vitro and in vivo. Control of pmf parsing into and pH by ionic strength. Biochemistry 40:1226-37
    • (2001) Biochemistry , vol.40 , pp. 1226-1237
    • Cruz, J.A.1    Sacksteder, C.A.2    Kanazawa, A.3    Kramer, D.M.4
  • 7
    • 34848863975 scopus 로고    scopus 로고
    • The thylakoid protonmotive force in vivo.Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced PMF
    • Takizawa K, Cruz JA, Kanazawa A, Kramer DM. 2007. The thylakoid protonmotive force in vivo.Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced PMF. Biochim. Biophys. Acta 1767:1233-44
    • (2007) Biochim. Biophys. Acta , vol.1767 , pp. 1233-1244
    • Takizawa, K.1    Cruz, J.A.2    Kanazawa, A.3    Kramer, D.M.4
  • 8
    • 0013866046 scopus 로고
    • ATP formation caused by acid-base transition of spinach chloroplast
    • Jagendorf AT, Uribe E. 1966. ATP formation caused by acid-base transition of spinach chloroplast. PNAS 55:170-77
    • (1966) PNAS , vol.55 , pp. 170-177
    • Jagendorf, A.T.1    Uribe, E.2
  • 9
    • 0014247117 scopus 로고
    • On the ion transport system of photosynthesis. Investigation on a molecular level
    • Junge W, Witt HT. 1968. On the ion transport system of photosynthesis. Investigation on a molecular level. Z. Naturforsch. 23B:244-54
    • (1968) Z. Naturforsch. 23B , pp. 244-254
    • Junge, W.1    Witt, H.T.2
  • 10
    • 0014812694 scopus 로고
    • Necessity of an electric potential difference and its use for photophosphorylation in short flash groups
    • Junge W, Rumberg B, Schroeder H. 1970. Necessity of an electric potential difference and its use for photophosphorylation in short flash groups. Eur. J. Biochem. 14:575-81
    • (1970) Eur. J. Biochem. , vol.14 , pp. 575-581
    • Junge, W.1    Rumberg, B.2    Schroeder, H.3
  • 12
    • 0017377594 scopus 로고
    • An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions
    • Kayalar C, Rosing J, Boyer PD. 1977. An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J. Biol. Chem. 252:2486-91
    • (1977) J. Biol. Chem. , vol.252 , pp. 2486-2491
    • Kayalar, C.1    Rosing, J.2    Boyer, P.D.3
  • 13
    • 0017616439 scopus 로고
    • Conformational coupling in oxidative phosphorylation and photophosphorylation
    • Boyer PD. 1977. Conformational coupling in oxidative phosphorylation and photophosphorylation. Trends Biochem. Sci. 2:38-41
    • (1977) Trends Biochem. Sci. , vol.2 , pp. 38-41
    • Boyer, P.D.1
  • 14
    • 0002888351 scopus 로고
    • The present status of the binding-changemechanism and its relation to ATP formation by chloroplasts
    • ed. BR Selman, S Selman-Reimer, Amsterdam: Elsevier
    • Boyer PD, Kohlbrenner WE. 1981. The present status of the binding-changemechanism and its relation to ATP formation by chloroplasts. In Energy Coupling in Photosynthesis, ed. BR Selman, S Selman-Reimer, pp. 231-41. Amsterdam: Elsevier
    • (1981) Energy Coupling in Photosynthesis , pp. 231-241
    • Boyer, P.D.1    Kohlbrenner, W.E.2
  • 15
    • 0023522190 scopus 로고
    • The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs
    • Rao R, Senior AE. 1987. The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs. J. Biol. Chem. 25:17450-54
    • (1987) J. Biol. Chem. , vol.25 , pp. 17450-17454
    • Rao, R.1    Senior, A.E.2
  • 16
    • 0020490477 scopus 로고
    • Adenine nucleotide binding sites on beef heart F1-ATPase. Evidence for three exchangeable sites that are distinct from three noncatalytic sites
    • Cross RL, Nalin CM. 1982. Adenine nucleotide binding sites on beef heart F1-ATPase. Evidence for three exchangeable sites that are distinct from three noncatalytic sites. J. Biol. Chem. 257:2874-81
    • (1982) J. Biol. Chem. , vol.257 , pp. 2874-2881
    • Cross, R.L.1    Nalin, C.M.2
  • 17
    • 0028033547 scopus 로고
    • Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation
    • Weber J, Wilke-Mounts S, Senior AE. 1994. Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation. J. Biol. Chem. 269:20462-67
    • (1994) J. Biol. Chem. , vol.269 , pp. 20462-20467
    • Weber, J.1    Wilke-Mounts, S.2    Senior, A.E.3
  • 18
    • 0021829239 scopus 로고
    • Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria
    • Walker JE, Fearnely IM, Gay NJ, Gibson BW, Northrop FD, et al. 1985. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J. Mol. Biol. 184:677-701
    • (1985) J. Mol. Biol. , vol.184 , pp. 677-701
    • Walker, J.E.1    Fearnely, I.M.2    Gay, N.J.3    Gibson, B.W.4    Northrop, F.D.5
  • 19
    • 84884611255 scopus 로고    scopus 로고
    • Half a century of molecular bioenergetics
    • Junge W. 2013. Half a century of molecular bioenergetics. Biochem. Soc. Trans. 41:1207-18
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1207-1218
    • Junge, W.1
  • 20
    • 0031008228 scopus 로고    scopus 로고
    • The ATP synthase - A splendid molecular machine
    • Boyer PD. 1997. The ATP synthase-a splendid molecular machine. Annu. Rev. Biochem. 66:717-49
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 717-749
    • Boyer, P.D.1
  • 21
    • 0030715561 scopus 로고    scopus 로고
    • ATP synthase: An electrochemical transducer with rotatory mechanics
    • Junge W, Lill H, Engelbrecht S. 1997. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22:420-23
    • (1997) Trends Biochem. Sci. , vol.22 , pp. 420-423
    • Junge, W.1    Lill, H.2    Engelbrecht, S.3
  • 22
    • 3042640723 scopus 로고    scopus 로고
    • Rotation of F1-ATPase: How an ATP-driven molecular machine may work
    • Kinosita K Jr, Adachi K, Itoh H. 2004. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu. Rev. Biophys. Biomol. Struct. 33:245-68
    • (2004) Annu. Rev. Biophys. Biomol. Struct. , vol.33 , pp. 245-268
    • Kinosita, K.1    Adachi, K.2    Itoh, H.3
  • 24
    • 84873120174 scopus 로고    scopus 로고
    • The ATP synthase: The understood, the uncertain and the unknown
    • Walker JE. 2013. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41:1-16
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1-16
    • Walker, J.E.1
  • 25
    • 66249132322 scopus 로고    scopus 로고
    • Torque generation and elastic power transmission in the rotary FOF1-ATPase 3
    • Junge W, Sielaff H, Engelbrecht S. 2009. Torque generation and elastic power transmission in the rotary FOF1-ATPase 3. Nature 459:364-70
    • (2009) Nature , vol.459 , pp. 364-370
    • Junge, W.1    Sielaff, H.2    Engelbrecht, S.3
  • 26
    • 0014385883 scopus 로고
    • Correlation between field formation, proton translocation, and the light reactions in photosynthesis
    • Schliephake W, Junge W, Witt HT. 1968. Correlation between field formation, proton translocation, and the light reactions in photosynthesis. Z. Naturforsch. 23:1571-78
    • (1968) Z. Naturforsch. , vol.23 , pp. 1571-1578
    • Schliephake, W.1    Junge, W.2    Witt, H.T.3
  • 27
    • 0003166939 scopus 로고
    • Proton uptake by the chloroplast cytochrome bf complex
    • Hope AB, Rich PR. 1989. Proton uptake by the chloroplast cytochrome bf complex. Biochim. Biophys. Acta 975:96-103
    • (1989) Biochim. Biophys. Acta , vol.975 , pp. 96-103
    • Hope, A.B.1    Rich, P.R.2
  • 28
    • 84917883763 scopus 로고
    • The absorption spectrum of single blebs and the specific surface of thylakoids
    • Stolz B, Walz D. 1988. The absorption spectrum of single blebs and the specific surface of thylakoids. Mol. Cell. Biol. 7:83-88
    • (1988) Mol. Cell. Biol. , vol.7 , pp. 83-88
    • Stolz, B.1    Walz, D.2
  • 29
    • 0041343571 scopus 로고
    • Structure and chemistry of plastids
    • Menke W. 1962. Structure and chemistry of plastids. Annu. Rev. Plant Physiol. 13:27-44
    • (1962) Annu. Rev. Plant Physiol. , vol.13 , pp. 27-44
    • Menke, W.1
  • 30
    • 0025634157 scopus 로고
    • The electric unit size of thylakoid membranes
    • Schönknecht G, Althoff G, Junge W. 1990. The electric unit size of thylakoid membranes. FEBS Lett. 277:65-68
    • (1990) FEBS Lett. , vol.277 , pp. 65-68
    • Schönknecht, G.1    Althoff, G.2    Junge, W.3
  • 31
    • 0014713102 scopus 로고
    • The three-dimensional arrangement of intergranal lamellae in chloroplasts
    • Paolillo DJ Jr. 1970. The three-dimensional arrangement of intergranal lamellae in chloroplasts. J. Cell Sci. 6:243-55
    • (1970) J. Cell Sci. , vol.6 , pp. 243-255
    • Paolillo, D.J.1
  • 32
    • 57749092892 scopus 로고    scopus 로고
    • The three-dimensional network of the thylakoid membranes in plants: Quasihelical model of the granum-stroma assembly
    • Mustardy L, Buttle K, Steinbach G, Garab G. 2008. The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell 20:2552-57
    • (2008) Plant Cell , vol.20 , pp. 2552-2557
    • Mustardy, L.1    Buttle, K.2    Steinbach, G.3    Garab, G.4
  • 33
    • 79953722236 scopus 로고    scopus 로고
    • Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography
    • Austin JR 2nd, Staehelin LA. 2011. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol. 155:1601-11
    • (2011) Plant Physiol. , vol.155 , pp. 1601-1611
    • Austin, J.R.1    Staehelin, L.A.2
  • 34
    • 79955396906 scopus 로고    scopus 로고
    • Electron tomography of plant thylakoidmembranes
    • Daum B, Kühlbrandt W. 2011. Electron tomography of plant thylakoidmembranes. J. Exp. Bot. 62:2393-402
    • (2011) J. Exp. Bot. , vol.62 , pp. 2393-2402
    • Daum, B.1    Kühlbrandt, W.2
  • 35
    • 0019316151 scopus 로고
    • Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts
    • Andersson B, Anderson JM. 1980. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta 593:427-40
    • (1980) Biochim. Biophys. Acta , vol.593 , pp. 427-440
    • Andersson, B.1    Anderson, J.M.2
  • 36
    • 0016711499 scopus 로고
    • Chloroplastmembrane structure. Intramembranous particles of different sizesmake contact in stacked membrane regions
    • Staehelin LA. 1975. Chloroplastmembrane structure. Intramembranous particles of different sizesmake contact in stacked membrane regions. Biochim. Biophys. Acta 408:1-11
    • (1975) Biochim. Biophys. Acta , vol.408 , pp. 1-11
    • Staehelin, L.A.1
  • 37
    • 77953209825 scopus 로고    scopus 로고
    • Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea
    • Daum B, Nicastro D, Austin J, McIntosh JR, Kühlbrandt W. 2010. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299-312
    • (2010) Plant Cell , vol.22 , pp. 1299-1312
    • Daum, B.1    Nicastro, D.2    Austin, J.3    McIntosh, J.R.4    Kühlbrandt, W.5
  • 38
    • 0035214910 scopus 로고    scopus 로고
    • A quantitative model of the domain structure of the photosynthetic membrane
    • Albertsson P. 2001. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6:349-58
    • (2001) Trends Plant Sci. , vol.6 , pp. 349-358
    • Albertsson, P.1
  • 39
    • 0027359059 scopus 로고
    • Why do thylakoid membranes from higher plants form grana stacks?
    • Trissl HW, Wilhelm C. 1993. Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem. Sci. 18:415-19
    • (1993) Trends Biochem. Sci. , vol.18 , pp. 415-419
    • Trissl, H.W.1    Wilhelm, C.2
  • 40
    • 0024082182 scopus 로고
    • The dynamic photosynthetic membrane and regulation of solar energy conversion
    • Anderson JM, Andersson B. 1988. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci. 13:351-55
    • (1988) Trends Biochem. Sci. , vol.13 , pp. 351-355
    • Anderson, J.M.1    Andersson, B.2
  • 41
    • 0028114231 scopus 로고
    • The structure of F1-ATPase from bovine heart mitochondria determined at 2.8A° resolution
    • Abrahams JP, Leslie AG, Lutter R, Walker JE. 1994. The structure of F1-ATPase from bovine heart mitochondria determined at 2.8A° resolution. Nature 370:621-28
    • (1994) Nature , vol.370 , pp. 621-628
    • Abrahams, J.P.1    Leslie, A.G.2    Lutter, R.3    Walker, J.E.4
  • 42
    • 34347226731 scopus 로고    scopus 로고
    • Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9A° resolution
    • Bowler MW, Montgomery MG, Leslie AG, Walker JE. 2007. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9A° resolution. J. Biol. Chem. 282:14238-42
    • (2007) J. Biol. Chem. , vol.282 , pp. 14238-14242
    • Bowler, M.W.1    Montgomery, M.G.2    Leslie, A.G.3    Walker, J.E.4
  • 43
    • 0020002423 scopus 로고
    • E. Coli F1-ATPase interacts with a membrane protein component of a proton channel
    • Walker JE, Saraste M, Gay NJ. 1982. E. Coli F1-ATPase interacts with a membrane protein component of a proton channel. Nature 298:867-69
    • (1982) Nature , vol.298 , pp. 867-869
    • Walker, J.E.1    Saraste, M.2    Gay, N.J.3
  • 44
    • 33749014394 scopus 로고    scopus 로고
    • A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein
    • Kötting C, Blessenohl M, Suveyzdis Y, Goody RS, Wittinghofer A, Gerwert K. 2006. A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein. PNAS 103:13911-16
    • (2006) PNAS , vol.103 , pp. 13911-13916
    • Kötting, C.1    Blessenohl, M.2    Suveyzdis, Y.3    Goody, R.S.4    Wittinghofer, A.5    Gerwert, K.6
  • 45
    • 0035838982 scopus 로고    scopus 로고
    • Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: Implications for the mechanism of rotary catalysis
    • Menz RI, Walker JE, Leslie AG. 2001. Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106:331-41
    • (2001) Cell , vol.106 , pp. 331-341
    • Menz, R.I.1    Walker, J.E.2    Leslie, A.G.3
  • 46
    • 84863959033 scopus 로고    scopus 로고
    • Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria
    • Rees DM, Montgomery MG, Leslie AG, Walker JE. 2012. Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria. PNAS 109:11139-43
    • (2012) PNAS , vol.109 , pp. 11139-11143
    • Rees, D.M.1    Montgomery, M.G.2    Leslie, A.G.3    Walker, J.E.4
  • 47
    • 0035846822 scopus 로고    scopus 로고
    • The structure of the chloroplast F1-ATPase at 3.2A° resolution
    • Groth G, Pohl E. 2001. The structure of the chloroplast F1-ATPase at 3.2A° resolution. J. Biol. Chem. 276:1345-52
    • (2001) J. Biol. Chem. , vol.276 , pp. 1345-1352
    • Groth, G.1    Pohl, E.2
  • 48
    • 34547689092 scopus 로고    scopus 로고
    • The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase
    • Stocker A, Keis S, Vonck J, Cook GM, Dimroth P. 2007. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Structure 15:904-14
    • (2007) Structure , vol.15 , pp. 904-914
    • Stocker, A.1    Keis, S.2    Vonck, J.3    Cook, G.M.4    Dimroth, P.5
  • 50
    • 79958858245 scopus 로고    scopus 로고
    • Structure of the ATP synthase catalytic complex (F1) fromEscherichia coli in an autoinhibited conformation
    • Cingolani G, Duncan TM. 2011. Structure of the ATP synthase catalytic complex (F1) fromEscherichia coli in an autoinhibited conformation. Nat. Struct. Mol. Biol. 18:701-7
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 701-707
    • Cingolani, G.1    Duncan, T.M.2
  • 51
    • 0028863682 scopus 로고
    • Rotation of subunits during catalysis by Escherichia coli F1-ATPase
    • Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL. 1995. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. PNAS 92:10964-68
    • (1995) PNAS , vol.92 , pp. 10964-10968
    • Duncan, T.M.1    Bulygin, V.V.2    Zhou, Y.3    Hutcheon, M.L.4    Cross, R.L.5
  • 52
    • 0029893335 scopus 로고    scopus 로고
    • Intersubunit rotation in active F-ATPase
    • Sabbert D, Engelbrecht S, Junge W. 1996. Intersubunit rotation in active F-ATPase. Nature 381:623-25
    • (1996) Nature , vol.381 , pp. 623-625
    • Sabbert, D.1    Engelbrecht, S.2    Junge, W.3
  • 53
    • 0030903268 scopus 로고    scopus 로고
    • Functional and idling rotatory motion within F1-ATPase
    • Sabbert D, Engelbrecht S, Junge W. 1997. Functional and idling rotatory motion within F1-ATPase. PNAS 94:4401-5
    • (1997) PNAS , vol.94 , pp. 4401-4405
    • Sabbert, D.1    Engelbrecht, S.2    Junge, W.3
  • 54
    • 0030934380 scopus 로고    scopus 로고
    • Direct observation of the rotation of F-ATPase
    • Noji H, Yasuda R, Yoshida M, Kinosita K. 1997. Direct observation of the rotation of F-ATPase. Nature 386:299-302
    • (1997) Nature , vol.386 , pp. 299-302
    • Noji, H.1    Yasuda, R.2    Yoshida, M.3    Kinosita, K.4
  • 55
    • 0035912221 scopus 로고    scopus 로고
    • Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase
    • Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H. 2001. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898-904
    • (2001) Nature , vol.410 , pp. 898-904
    • Yasuda, R.1    Noji, H.2    Yoshida, M.3    Kinosita, K.4    Itoh, H.5
  • 56
    • 0345166868 scopus 로고    scopus 로고
    • Catalysis and rotation of F1 motor: Cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation
    • Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K Jr, Yoshida M. 2003. Catalysis and rotation of F1 motor: Cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. PNAS 100:14731-36
    • (2003) PNAS , vol.100 , pp. 14731-14736
    • Shimabukuro, K.1    Yasuda, R.2    Muneyuki, E.3    Hara, K.Y.4    Kinosita, K.5    Yoshida, M.6
  • 57
    • 13444292847 scopus 로고    scopus 로고
    • ATP-driven stepwise rotation of FOF1-ATP synthase
    • Ueno H, Suzuki T, Kinosita K, Jr, Yoshida M. 2005. ATP-driven stepwise rotation of FOF1-ATP synthase. PNAS 102:1333-38
    • (2005) PNAS , vol.102 , pp. 1333-1338
    • Ueno, H.1    Suzuki, T.2    Kinosita, K.3    Yoshida, M.4
  • 58
    • 34447628890 scopus 로고    scopus 로고
    • Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation
    • Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, et al. 2007. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309-21
    • (2007) Cell , vol.130 , pp. 309-321
    • Adachi, K.1    Oiwa, K.2    Nishizaka, T.3    Furuike, S.4    Noji, H.5
  • 59
    • 57149107555 scopus 로고    scopus 로고
    • Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80 degrees and 40 degrees substep rotations
    • Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T. 2008. Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80 degrees and 40 degrees substep rotations. Nat. Struct. Mol. Biol. 15:1326-33
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1326-1333
    • Masaike, T.1    Koyama-Horibe, F.2    Oiwa, K.3    Yoshida, M.4    Nishizaka, T.5
  • 61
    • 77958163287 scopus 로고    scopus 로고
    • Phosphate release in F1-ATPase catalytic cycle follows ADP release
    • Watanabe R, Iino R, Noji H. 2010. Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat. Chem. Biol. 6:814-20
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 814-820
    • Watanabe, R.1    Iino, R.2    Noji, H.3
  • 62
    • 84901020169 scopus 로고    scopus 로고
    • Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation
    • Watanabe R, Noji H. 2014. Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation. Sci. Rep. 4:4962
    • (2014) Sci. Rep. , vol.4 , pp. 4962
    • Watanabe, R.1    Noji, H.2
  • 65
    • 56649088286 scopus 로고    scopus 로고
    • Domain compliance and elastic power transmission in rotary FOF1-ATPase
    • Sielaff H, Rennekamp H, Wächter A, Xie H, Hilbers F, et al. 2008. Domain compliance and elastic power transmission in rotary FOF1-ATPase. PNAS 105:17760-65
    • (2008) PNAS , vol.105 , pp. 17760-17765
    • Sielaff, H.1    Rennekamp, H.2    Wächter, A.3    Xie, H.4    Hilbers, F.5
  • 66
    • 56649096812 scopus 로고    scopus 로고
    • Functional halt positions of rotary FOF1- ATPase correlated with crystal structures
    • Sielaff H, Rennekamp H, Engelbrecht S, Junge W. 2008. Functional halt positions of rotary FOF1- ATPase correlated with crystal structures. Biophys. J. 95:4979-87
    • (2008) Biophys. J. , vol.95 , pp. 4979-4987
    • Sielaff, H.1    Rennekamp, H.2    Engelbrecht, S.3    Junge, W.4
  • 68
    • 38349193122 scopus 로고    scopus 로고
    • Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes
    • York J, Spetzler D, Hornung T, Ishmukhametov R, Martin J, Frasch WD.2007. Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes. J. Bioenerg. Biomembr. 39:435-39
    • (2007) J. Bioenerg. Biomembr. , vol.39 , pp. 435-439
    • York, J.1    Spetzler, D.2    Hornung, T.3    Ishmukhametov, R.4    Martin, J.5    Frasch, W.D.6
  • 71
    • 58549118430 scopus 로고    scopus 로고
    • Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation 1
    • Okuno D, Fujisawa R, Iino R, Hirono-Hara Y, Imamura H, Noji H. 2008. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation 1. PNAS 105:20722-27
    • (2008) PNAS , vol.105 , pp. 20722-20727
    • Okuno, D.1    Fujisawa, R.2    Iino, R.3    Hirono-Hara, Y.4    Imamura, H.5    Noji, H.6
  • 72
    • 77950599731 scopus 로고    scopus 로고
    • Chemo-mechanical coupling in F1-ATPase revealed by catalytic site occupancy during catalysis
    • Shimo-Kon R, Muneyuki E, Sakai H, Adachi K, Yoshida M, Kinosita K Jr. 2010. Chemo-mechanical coupling in F1-ATPase revealed by catalytic site occupancy during catalysis. Biophys. J. 98:1227-36
    • (2010) Biophys. J. , vol.98 , pp. 1227-1236
    • Shimo-Kon, R.1    Muneyuki, E.2    Sakai, H.3    Adachi, K.4    Yoshida, M.5    Kinosita, K.6
  • 73
    • 33751086144 scopus 로고    scopus 로고
    • Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1-ATPase
    • Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM. 2006. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1-ATPase. EMBO J. 25:5433-42
    • (2006) EMBO J. , vol.25 , pp. 5433-5442
    • Kabaleeswaran, V.1    Puri, N.2    Walker, J.E.3    Leslie, A.G.4    Mueller, D.M.5
  • 74
    • 84885349814 scopus 로고    scopus 로고
    • Phosphate release coupled to rotary motion of F1-ATPase
    • Okazaki K, Hummer G. 2013. Phosphate release coupled to rotary motion of F1-ATPase. PNAS 110:16468-73
    • (2013) PNAS , vol.110 , pp. 16468-16473
    • Okazaki, K.1    Hummer, G.2
  • 75
    • 0027317040 scopus 로고
    • Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: Maximal ATP hydrolysis occurs with three sites occupied
    • Weber J, Wilke-Mounts S, Lee RSF, Grell E, Senior AE. 1993. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: Maximal ATP hydrolysis occurs with three sites occupied. J. Biol. Chem. 268:20126-33
    • (1993) J. Biol. Chem. , vol.268 , pp. 20126-20133
    • Weber, J.1    Wilke-Mounts, S.2    Rsf, L.3    Grell, E.4    Senior, A.E.5
  • 76
    • 0029744684 scopus 로고    scopus 로고
    • Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis
    • Weber J, Bowman C, Senior AE. 1996. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. J. Biol. Chem. 271:18711-18
    • (1996) J. Biol. Chem. , vol.271 , pp. 18711-18718
    • Weber, J.1    Bowman, C.2    Senior, A.E.3
  • 77
    • 0742270602 scopus 로고    scopus 로고
    • Chemomechanical coupling in F1- ATPase revealed by simultaneous observation of nucleotide kinetics and rotation
    • Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, et al. 2004. Chemomechanical coupling in F1- ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11:142-48
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 142-148
    • Nishizaka, T.1    Oiwa, K.2    Noji, H.3    Kimura, S.4    Muneyuki, E.5
  • 78
    • 0742270832 scopus 로고    scopus 로고
    • Mechanically driven ATP synthesis by F1-ATPase
    • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, et al. 2004. Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465-68
    • (2004) Nature , vol.427 , pp. 465-468
    • Itoh, H.1    Takahashi, A.2    Adachi, K.3    Noji, H.4    Yasuda, R.5
  • 80
    • 79961236945 scopus 로고    scopus 로고
    • High-speed atomic forcemicroscopy reveals rotary catalysis of rotorless F1-ATPase
    • Uchihashi T, Iino R, Ando T, Noji H. 2011. High-speed atomic forcemicroscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755-58
    • (2011) Science , vol.333 , pp. 755-758
    • Uchihashi, T.1    Iino, R.2    Ando, T.3    Noji, H.4
  • 82
    • 0037188741 scopus 로고    scopus 로고
    • F1-ATPase, the C-terminal end of subunit γ, is not required for ATP hydrolysis-driven rotation
    • Müller M, Pänke O, Junge W, Engelbrecht S. 2002. F1-ATPase, the C-terminal end of subunit γ, is not required for ATP hydrolysis-driven rotation. J. Biol. Chem. 277:23308-13
    • (2002) J. Biol. Chem. , vol.277 , pp. 23308-23313
    • Müller, M.1    Pänke, O.2    Junge, W.3    Engelbrecht, S.4
  • 83
    • 58149280492 scopus 로고    scopus 로고
    • Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production
    • Hossain MD, Furuike S, Maki Y, Adachi K, Suzuki T, et al. 2008. Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Biophys. J. 95:4837-44
    • (2008) Biophys. J. , vol.95 , pp. 4837-4844
    • Hossain, M.D.1    Furuike, S.2    Maki, Y.3    Adachi, K.4    Suzuki, T.5
  • 84
    • 80052458591 scopus 로고    scopus 로고
    • Torque generation in F1- ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice
    • Kohori A, Chiwata R, Hossain MD, Furuike S, Shiroguchi K, et al. 2011. Torque generation in F1- ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophys. J. 101:188-95
    • (2011) Biophys. J. , vol.101 , pp. 188-195
    • Kohori, A.1    Chiwata, R.2    Hossain, M.D.3    Furuike, S.4    Shiroguchi, K.5
  • 85
    • 84862907683 scopus 로고    scopus 로고
    • Torque generation and utilization inmotor enzyme FOF1-ATP synthase: Half-torque F1 with short-sized pushrod helix and reduced ATP synthesis by half-torque FOF1
    • Usukura E, Suzuki T, Furuike S, Soga N, Saita E, et al. 2012. Torque generation and utilization inmotor enzyme FOF1-ATP synthase: half-torque F1 with short-sized pushrod helix and reduced ATP synthesis by half-torque FOF1. J. Biol. Chem. 287:1884-91
    • (2012) J. Biol. Chem. , vol.287 , pp. 1884-1891
    • Usukura, E.1    Suzuki, T.2    Furuike, S.3    Soga, N.4    Saita, E.5
  • 86
    • 84901276825 scopus 로고    scopus 로고
    • None of the rotor residues of F1-ATPase are essential for torque generation
    • Chiwata R, Kohori A, Kawakami T, Shiroguchi K, Furuike S, et al. 2014. None of the rotor residues of F1-ATPase are essential for torque generation. Biophys. J. 106:2166-74
    • (2014) Biophys. J. , vol.106 , pp. 2166-2174
    • Chiwata, R.1    Kohori, A.2    Kawakami, T.3    Shiroguchi, K.4    Furuike, S.5
  • 87
    • 84900816208 scopus 로고    scopus 로고
    • Rotation triggers nucleotide-independent conformational transition of the empty βsubunit of F1-ATPase
    • Czub J, Grubmüller H. 2014. Rotation triggers nucleotide-independent conformational transition of the empty βsubunit of F1-ATPase. J. Am. Chem. Soc. 136:6960-68
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6960-6968
    • Czub, J.1    Grubmüller, H.2
  • 88
    • 0032547899 scopus 로고    scopus 로고
    • Energy transduction in the F1 motor of ATP synthase
    • Wang H, Oster G. 1998. Energy transduction in the F1 motor of ATP synthase. Nature 396:279-82
    • (1998) Nature , vol.396 , pp. 279-282
    • Wang, H.1    Oster, G.2
  • 89
    • 0034859197 scopus 로고    scopus 로고
    • Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: Curvature as an indicator of the torque
    • Cherepanov DA, Junge W. 2001. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque. Biophys. J. 81:1234-44
    • (2001) Biophys. J. , vol.81 , pp. 1234-1244
    • Cherepanov, D.A.1    Junge, W.2
  • 90
    • 0034866072 scopus 로고    scopus 로고
    • Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: Torque profile of the enzyme
    • Pänke O, Cherepanov DA, Gumbiowski K, Engelbrecht S, Junge W. 2001. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: torque profile of the enzyme. Biophys. J. 81:1220-33
    • (2001) Biophys. J. , vol.81 , pp. 1220-1233
    • Pänke, O.1    Cherepanov, D.A.2    Gumbiowski, K.3    Engelbrecht, S.4    Junge, W.5
  • 91
    • 11144292063 scopus 로고    scopus 로고
    • Proton slip in the ATP synthase of Rhodobacter capsulatus: Induction, proton conduction, and nucleotide dependence
    • Feniouk BA, Mulkidjanian AY, Junge W. 2005. Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. Biochim. Biophys. Acta 1706:184-94
    • (2005) Biochim. Biophys. Acta , vol.1706 , pp. 184-194
    • Feniouk, B.A.1    Mulkidjanian, A.Y.2    Junge, W.3
  • 92
    • 0027301687 scopus 로고
    • Proton slip of chloroplast ATPase: Its nucleotide dependence, energetic threshold and relation to an alternating site mechanism of catalysis
    • Groth G, Junge W. 1993. Proton slip of chloroplast ATPase: its nucleotide dependence, energetic threshold and relation to an alternating site mechanism of catalysis. Biochemistry 32:8103-11
    • (1993) Biochemistry , vol.32 , pp. 8103-8111
    • Groth, G.1    Junge, W.2
  • 93
    • 84855500436 scopus 로고    scopus 로고
    • Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase
    • Mukherjee S, Warshel A. 2011. Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase. PNAS 108:20550-55
    • (2011) PNAS , vol.108 , pp. 20550-20555
    • Mukherjee, S.1    Warshel, A.2
  • 94
    • 39549090640 scopus 로고    scopus 로고
    • How subunit coupling produces the γ-subunit rotary motion in F1-ATPase
    • Pu J, Karplus M. 2008. How subunit coupling produces the γ-subunit rotary motion in F1-ATPase. PNAS 105:1192-97
    • (2008) PNAS , vol.105 , pp. 1192-1197
    • Pu, J.1    Karplus, M.2
  • 95
    • 17844367330 scopus 로고    scopus 로고
    • Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus
    • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P. 2005. Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659-62
    • (2005) Science , vol.308 , pp. 659-662
    • Meier, T.1    Polzer, P.2    Diederichs, K.3    Welte, W.4    Dimroth, P.5
  • 96
    • 0033607504 scopus 로고    scopus 로고
    • Molecular architecture of the rotary motor in ATP synthase
    • Stock D, Leslie AG, Walker JE. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700-5
    • (1999) Science , vol.286 , pp. 1700-1705
    • Stock, D.1    Leslie, A.G.2    Walker, J.E.3
  • 97
    • 67650546998 scopus 로고    scopus 로고
    • Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase
    • Vollmar M, Schlieper D, Winn M, Buchner C, Groth G. 2009. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J. Biol. Chem. 284:18228-35
    • (2009) J. Biol. Chem. , vol.284 , pp. 18228-18235
    • Vollmar, M.1    Schlieper, D.2    Winn, M.3    Buchner, C.4    Groth, G.5
  • 99
    • 84855793968 scopus 로고    scopus 로고
    • Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase
    • Lau WC, Rubinstein JL. 2012. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481:214-18
    • (2012) Nature , vol.481 , pp. 214-218
    • Lau, W.C.1    Rubinstein, J.L.2
  • 100
    • 0022018913 scopus 로고
    • All three subunits are required for the reconstitution of an active proton channel (FO) of Escherichia coli ATP synthase (F1FO)
    • Schneider E, Altendorf K. 1985. All three subunits are required for the reconstitution of an active proton channel (FO) of Escherichia coli ATP synthase (F1FO). EMBO J. 4:515-18
    • (1985) EMBO J. , vol.4 , pp. 515-518
    • Schneider, E.1    Altendorf, K.2
  • 101
    • 77956869807 scopus 로고    scopus 로고
    • A new type of proton coordination in an F1FO-ATP synthase rotor ring
    • Preiss L, Yildiz O, Hicks DB, Krulwich TA, Meier T. 2010. A new type of proton coordination in an F1FO-ATP synthase rotor ring. PLOS Biol. 8:e1000443
    • (2010) PLOS Biol. , vol.8 , pp. e1000443
    • Preiss, L.1    Yildiz, O.2    Hicks, D.B.3    Krulwich, T.A.4    Meier, T.5
  • 102
    • 0035929328 scopus 로고    scopus 로고
    • The central plug in the reconstituted undecameric cylinder of a bacterial ATP synthase consists of phospholipids
    • Meier T, Matthey U, Henzen F, Dimroth P, Müller DJ. 2001. The central plug in the reconstituted undecameric cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett. 505:353-56
    • (2001) FEBS Lett. , vol.505 , pp. 353-356
    • Meier, T.1    Matthey, U.2    Henzen, F.3    Dimroth, P.4    Müller, D.J.5
  • 103
    • 78049288139 scopus 로고    scopus 로고
    • Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria
    • Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE. 2010. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. PNAS 107:16823-27
    • (2010) PNAS , vol.107 , pp. 16823-16827
    • Watt, I.N.1    Montgomery, M.G.2    Runswick, M.J.3    Leslie, A.G.4    Walker, J.E.5
  • 106
    • 84930738421 scopus 로고    scopus 로고
    • PNAS 98:4966-71
    • PNAS , vol.98 , pp. 4966-4971
  • 107
    • 4344658080 scopus 로고    scopus 로고
    • Thermophilic ATP synthase has a decamer c-ring: Indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling
    • Mitome N, Suzuki T, Hayashi S, Yoshida M. 2004. Thermophilic ATP synthase has a decamer c-ring: indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling. PNAS 101:12159-64
    • (2004) PNAS , vol.101 , pp. 12159-12164
    • Mitome, N.1    Suzuki, T.2    Hayashi, S.3    Yoshida, M.4
  • 109
    • 34547908489 scopus 로고    scopus 로고
    • A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. Strain TA2. A1 facilitates ATP synthesis at low electrochemical proton potential
    • Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, et al. 2007. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol. Microbiol. 65:1181-92
    • (2007) Mol. Microbiol. , vol.65 , pp. 1181-1192
    • Meier, T.1    Morgner, N.2    Matthies, D.3    Pogoryelov, D.4    Keis, S.5
  • 110
    • 84877324079 scopus 로고    scopus 로고
    • The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4
    • Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, et al. 2013. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. PNAS 110:7874-79
    • (2013) PNAS , vol.110 , pp. 7874-7879
    • Preiss, L.1    Klyszejko, A.L.2    Hicks, D.B.3    Liu, J.4    Fackelmayer, O.J.5
  • 111
    • 27644566520 scopus 로고    scopus 로고
    • The c15 ring of the Spirulina platensis F-ATP synthase: F1FO symmetry mismatch is not obligatory
    • Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Müller DJ. 2005. The c15 ring of the Spirulina platensis F-ATP synthase: F1FO symmetry mismatch is not obligatory. EMBO Rep. 6:1040-44
    • (2005) EMBO Rep. , vol.6 , pp. 1040-1044
    • Pogoryelov, D.1    Yu, J.2    Meier, T.3    Vonck, J.4    Dimroth, P.5    Müller, D.J.6
  • 114
    • 0019926213 scopus 로고
    • An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel
    • Hoppe J, Schairer HU, Friedl P, Sebald W. 1982. An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel. FEBS Lett. 145:21-29
    • (1982) FEBS Lett. , vol.145 , pp. 21-29
    • Hoppe, J.1    Schairer, H.U.2    Friedl, P.3    Sebald, W.4
  • 115
    • 0023658657 scopus 로고
    • The proton pore in the Escherichia coli FOF1-ATPase: A requirement for arginine at position 210 of the α-subunit
    • Lightowlers RN, Howitt SM, Hatch L, Gibson F, Cox GB. 1987. The proton pore in the Escherichia coli FOF1-ATPase: a requirement for arginine at position 210 of the α-subunit. Biochim. Biophys. Acta 894:399-406
    • (1987) Biochim. Biophys. Acta , vol.894 , pp. 399-406
    • Lightowlers, R.N.1    Howitt, S.M.2    Hatch, L.3    Gibson, F.4    Cox, G.B.5
  • 116
    • 0027970177 scopus 로고
    • A mechanism of proton translocation by F1FO-ATPase synthases suggested by double mutants of the αsubunit
    • Vik SB, Antonio BJ. 1994. A mechanism of proton translocation by F1FO-ATPase synthases suggested by double mutants of the αsubunit. J. Biol. Chem. 269:30364-69
    • (1994) J. Biol. Chem. , vol.269 , pp. 30364-30369
    • Vik, S.B.1    Antonio, B.J.2
  • 117
    • 0023644878 scopus 로고
    • The proton flux through the bacterial flagellar motor
    • Meister M, Lowe G, Berg HC. 1987. The proton flux through the bacterial flagellar motor. Cell 49:643-50
    • (1987) Cell , vol.49 , pp. 643-650
    • Meister, M.1    Lowe, G.2    Berg, H.C.3
  • 118
    • 0032576724 scopus 로고    scopus 로고
    • Energy transduction in ATP synthase
    • Elston T, Wang H, Oster G. 1998. Energy transduction in ATP synthase. Nature 391:510-14
    • (1998) Nature , vol.391 , pp. 510-514
    • Elston, T.1    Wang, H.2    Oster, G.3
  • 119
    • 0025286615 scopus 로고
    • The essential carboxyl group in subunit c of the F1FOATPase synthase can be moved and H+-translocating function retained
    • Miller MJ, Oldenburg M, Fillingame RH. 1990. The essential carboxyl group in subunit c of the F1FOATPase synthase can be moved and H+-translocating function retained. PNAS 87:4900-4
    • (1990) PNAS , vol.87 , pp. 4900-4904
    • Miller, M.J.1    Oldenburg, M.2    Fillingame, R.H.3
  • 120
    • 0028880405 scopus 로고
    • The essential arginine residue at position 210 in the αsubunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity
    • Hatch LP, Cox GB, Howitt SM. 1995. The essential arginine residue at position 210 in the αsubunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J. Biol. Chem. 270:29407-12
    • (1995) J. Biol. Chem. , vol.270 , pp. 29407-29412
    • Hatch, L.P.1    Cox, G.B.2    Howitt, S.M.3
  • 121
    • 34447260787 scopus 로고    scopus 로고
    • Essential arginine in subunit a and aspartate in subunit c of FOF1 ATP synthase: Effect of repositioning within helix 4 of subunit a and helix 2 of subunit c
    • Langemeyer L, Engelbrecht S. 2007. Essential arginine in subunit a and aspartate in subunit c of FOF1 ATP synthase: effect of repositioning within helix 4 of subunit a and helix 2 of subunit c. Biochim. Biophys. Acta 1767:998-1005
    • (2007) Biochim. Biophys. Acta , vol.1767 , pp. 998-1005
    • Langemeyer, L.1    Engelbrecht, S.2
  • 122
    • 0342724923 scopus 로고
    • Epilogue: From energetic abstraction to biochemical mechanism
    • Mitchell P. 1977. Epilogue: from energetic abstraction to biochemical mechanism. Symp. Soc. Gen. Microbiol. 27:383-423
    • (1977) Symp. Soc. Gen. Microbiol. , vol.27 , pp. 383-423
    • Mitchell, P.1
  • 123
    • 84875255512 scopus 로고    scopus 로고
    • Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking
    • DeLeon-Rangel J, Ishmukhametov RR, Jiang W, Fillingame RH, Vik SB. 2013. Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking. FEBS Lett. 587:892-97
    • (2013) FEBS Lett. , vol.587 , pp. 892-897
    • Deleon-Rangel, J.1    Ishmukhametov, R.R.2    Jiang, W.3    Fillingame, R.H.4    Vik, S.B.5
  • 124
    • 0032499690 scopus 로고    scopus 로고
    • Interacting helical faces of subunits a and c in the F1FO ATP synthase of Escherichia coli defined by disulfide cross-linking
    • Jiang WP, Fillingame RH. 1998. Interacting helical faces of subunits a and c in the F1FO ATP synthase of Escherichia coli defined by disulfide cross-linking. PNAS 95:6607-12
    • (1998) PNAS , vol.95 , pp. 6607-6612
    • Jiang, W.P.1    Fillingame, R.H.2
  • 125
    • 84901832038 scopus 로고    scopus 로고
    • Half channels mediating H transport and the mechanism of gating in the F sector of Escherichia coli FF ATP synthase
    • Fillingame RH, Steed PR. 2014. Half channels mediating H transport and the mechanism of gating in the F sector of Escherichia coli FF ATP synthase. Biochim. Biophys. Acta 1837:11305-10
    • (2014) Biochim. Biophys. Acta , vol.1837 , pp. 11305-11310
    • Fillingame, R.H.1    Steed, P.R.2
  • 126
    • 84893028451 scopus 로고    scopus 로고
    • Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm
    • Steed PR, Fillingame RH. 2014. Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm. J. Biol. Chem. 289:2127-38
    • (2014) J. Biol. Chem. , vol.289 , pp. 2127-2138
    • Steed, P.R.1    Fillingame, R.H.2
  • 127
    • 84867757591 scopus 로고    scopus 로고
    • Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations
    • Gohlke H, Schlieper D, Groth G. 2012. Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations. J. Biol. Chem. 287:36536-43
    • (2012) J. Biol. Chem. , vol.287 , pp. 36536-36543
    • Gohlke, H.1    Schlieper, D.2    Groth, G.3
  • 128
    • 0014581036 scopus 로고
    • Artificial indicator for electric phenomena in biological membranes and interfaces
    • Emrich HM, Junge W, Witt HT. 1969. Artificial indicator for electric phenomena in biological membranes and interfaces. Naturwissenschaften 56:514-15
    • (1969) Naturwissenschaften , vol.56 , pp. 514-515
    • Emrich, H.M.1    Junge, W.2    Witt, H.T.3
  • 129
    • 0012633142 scopus 로고
    • Complete tracking of proton flow in thylakoids - The unit conductance of CFO is greater than 10 fS
    • Schönknecht G, Junge W, Lill H, Engelbrecht S. 1986. Complete tracking of proton flow in thylakoids- the unit conductance of CFO is greater than 10 fS. FEBS Lett. 203:289-94
    • (1986) FEBS Lett. , vol.203 , pp. 289-294
    • Schönknecht, G.1    Junge, W.2    Lill, H.3    Engelbrecht, S.4
  • 130
    • 16344382800 scopus 로고    scopus 로고
    • Determination of proton flux and conductance at pH 6.8 through single FO sectors from Escherichia coli
    • Franklin MJ, Brusilow WS, Woodbury DJ. 2004. Determination of proton flux and conductance at pH 6.8 through single FO sectors from Escherichia coli. Biophys. J. 87:3594-99
    • (2004) Biophys. J. , vol.87 , pp. 3594-3599
    • Franklin, M.J.1    Brusilow, W.S.2    Woodbury, D.J.3
  • 133
    • 84884626706 scopus 로고    scopus 로고
    • Assembly of the Escherichia coli FOF1 ATP synthase involves distinct subcomplex formation
    • Deckers-Hebestreit G. 2013. Assembly of the Escherichia coli FOF1 ATP synthase involves distinct subcomplex formation. Biochem. Soc. Trans. 41:1288-93
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1288-1293
    • Deckers-Hebestreit, G.1
  • 134
    • 84883683618 scopus 로고    scopus 로고
    • Subunit δis the key player for assembly of the H+-translocating unit of Escherichia coli FOF1 ATP synthase
    • Hilbers F, Eggers R, Pradela K, Friedrich K, Herkenhoff-Hesselmann B, et al. 2013. Subunit δis the key player for assembly of the H+-translocating unit of Escherichia coli FOF1 ATP synthase. J. Biol. Chem. 288:25880-94
    • (2013) J. Biol. Chem. , vol.288 , pp. 25880-25894
    • Hilbers, F.1    Eggers, R.2    Pradela, K.3    Friedrich, K.4    Herkenhoff-Hesselmann, B.5
  • 135
    • 0033607622 scopus 로고    scopus 로고
    • Mechanical rotation of the c subunit oligomer in ATP synthase (FOF1): Direct observation
    • Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, et al. 1999. Mechanical rotation of the c subunit oligomer in ATP synthase (FOF1): direct observation. Science 286:1722-24
    • (1999) Science , vol.286 , pp. 1722-1724
    • Sambongi, Y.1    Iko, Y.2    Tanabe, M.3    Omote, H.4    Iwamoto-Kihara, A.5
  • 136
    • 0037908118 scopus 로고    scopus 로고
    • F-ATPase: Specific observation of the rotating c subunit oligomer of EFOEF1
    • Pänke O, Gumbiowski K, Junge W, Engelbrecht S. 2000. F-ATPase: specific observation of the rotating c subunit oligomer of EFOEF1. FEBS Lett. 472:34-38
    • (2000) FEBS Lett. , vol.472 , pp. 34-38
    • Pänke, O.1    Gumbiowski, K.2    Junge, W.3    Engelbrecht, S.4
  • 137
    • 0037063327 scopus 로고    scopus 로고
    • Stepwise rotation of the γ-subunit of EFOEF1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer
    • Börsch M, Diez M, Zimmermann B, Reuter R, Gräber P. 2002. Stepwise rotation of the γ-subunit of EFOEF1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett. 527:147-52
    • (2002) FEBS Lett. , vol.527 , pp. 147-152
    • Börsch, M.1    Diez, M.2    Zimmermann, B.3    Reuter, R.4    Gräber, P.5
  • 139
    • 70349216367 scopus 로고    scopus 로고
    • 36 degrees step size of proton-driven c-ring rotation in FoF1-ATP synthase 2
    • Düser MG, Zarrabi N, Cipriano DJ, Ernst S, Glick GD, et al. 2009. 36 degrees step size of proton-driven c-ring rotation in FoF1-ATP synthase 2. EMBO J. 28:2689-96
    • (2009) EMBO J. , vol.28 , pp. 2689-2696
    • Düser, M.G.1    Zarrabi, N.2    Cipriano, D.J.3    Ernst, S.4    Glick, G.D.5
  • 140
    • 78649688361 scopus 로고    scopus 로고
    • Direct observation of stepped proteolipid ring rotation in E. Coli FOF1-ATP synthase
    • Ishmukhametov R, Hornung T, Spetzler D, Frasch WD. 2010. Direct observation of stepped proteolipid ring rotation in E. Coli FOF1-ATP synthase. EMBO J. 29:3911-23
    • (2010) EMBO J. , vol.29 , pp. 3911-3923
    • Ishmukhametov, R.1    Hornung, T.2    Spetzler, D.3    Frasch, W.D.4
  • 141
    • 0033609081 scopus 로고    scopus 로고
    • Energy transduction in the sodium F-ATPase of Propionigenium modestum
    • Dimroth P, Wang H, Grabe M, Oster G. 1999. Energy transduction in the sodium F-ATPase of Propionigenium modestum. PNAS 96:4924-28
    • (1999) PNAS , vol.96 , pp. 4924-4928
    • Dimroth, P.1    Wang, H.2    Grabe, M.3    Oster, G.4
  • 142
    • 1542289939 scopus 로고    scopus 로고
    • Insights into the molecular mechanism of rotation in the FO sector of ATP synthase
    • Aksimentiev A, Balabin IA, Fillingame RH, Schulten K. 2004. Insights into the molecular mechanism of rotation in the FO sector of ATP synthase. Biophys. J. 86:1332-44
    • (2004) Biophys. J. , vol.86 , pp. 1332-1344
    • Aksimentiev, A.1    Balabin, I.A.2    Fillingame, R.H.3    Schulten, K.4
  • 144
    • 84866280235 scopus 로고    scopus 로고
    • Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the FO-ATPase
    • Mukherjee S, Warshel A. 2012. Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the FO-ATPase. PNAS 109:14876-81
    • (2012) PNAS , vol.109 , pp. 14876-14881
    • Mukherjee, S.1    Warshel, A.2
  • 145
    • 84863900235 scopus 로고    scopus 로고
    • Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast
    • Petersen J, Forster K, Turina P, Gräber P. 2012. Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. PNAS 109:11150-55
    • (2012) PNAS , vol.109 , pp. 11150-11155
    • Petersen, J.1    Forster, K.2    Turina, P.3    Gräber, P.4
  • 146
    • 0025363109 scopus 로고
    • A hybrid adenosine triphosphatase composed of F1 of Escherichia coli and FO of Propionigenium modestum is a functional sodium ion pump
    • Laubinger W, Deckers-Hebestreit G, Altendorf K, Dimroth P. 1990. A hybrid adenosine triphosphatase composed of F1 of Escherichia coli and FO of Propionigenium modestum is a functional sodium ion pump. Biochemistry 29:5458-63
    • (1990) Biochemistry , vol.29 , pp. 5458-5463
    • Laubinger, W.1    Deckers-Hebestreit, G.2    Altendorf, K.3    Dimroth, P.4
  • 147
    • 0032947857 scopus 로고    scopus 로고
    • Transient accumulation of elastic energy in proton translocating ATP synthase
    • Cherepanov DA, Mulkidjanian A, Junge W. 1999. Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett. 449:1-6
    • (1999) FEBS Lett. , vol.449 , pp. 1-6
    • Cherepanov, D.A.1    Mulkidjanian, A.2    Junge, W.3
  • 148
    • 17144435428 scopus 로고    scopus 로고
    • Kinetic modeling of rotary CFOF1-ATP synthase: Storage of elastic energy during energy transduction
    • Pänke O, Rumberg B. 1999. Kinetic modeling of rotary CFOF1-ATP synthase: storage of elastic energy during energy transduction. Biochim. Biophys. Acta 1412:118-28
    • (1999) Biochim. Biophys. Acta , vol.1412 , pp. 118-128
    • Pänke, O.1    Rumberg, B.2
  • 149
    • 79952758006 scopus 로고    scopus 로고
    • Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk
    • Wächter A, Bi Y, Dunn SD, Cain BD, Sielaff H, et al. 2011. Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. PNAS 108:3924-29
    • (2011) PNAS , vol.108 , pp. 3924-3929
    • Wächter, A.1    Bi, Y.2    Dunn, S.D.3    Cain, B.D.4    Sielaff, H.5
  • 150
    • 84866688335 scopus 로고    scopus 로고
    • Structure and flexibility of the c-ring in the electromotor of rotary FOF1-ATP of pea chloroplasts
    • Saroussi S, Schushan M, Ben-Tal N, Junge W, Nelson N. 2012. Structure and flexibility of the c-ring in the electromotor of rotary FOF1-ATP of pea chloroplasts. PLOS ONE 7:e43045
    • (2012) PLOS ONE , vol.7 , pp. e43045
    • Saroussi, S.1    Schushan, M.2    Ben-Tal, N.3    Junge, W.4    Nelson, N.5
  • 151
    • 79956320744 scopus 로고    scopus 로고
    • Torsional elasticity and energetics of F1-ATPase
    • Czub J, Grubmüller H. 2011. Torsional elasticity and energetics of F1-ATPase. PNAS 108:7408-13
    • (2011) PNAS , vol.108 , pp. 7408-7413
    • Czub, J.1    Grubmüller, H.2
  • 152
    • 84920407372 scopus 로고    scopus 로고
    • Lateral pH gradient between OXPHOS complex IV and FOF1 ATP-synthase in folded mitochondrial membranes
    • Rieger B, Junge W, Busch KB. 2014. Lateral pH gradient between OXPHOS complex IV and FOF1 ATP-synthase in folded mitochondrial membranes. Nat. Commun. 5:3103
    • (2014) Nat. Commun. , vol.5 , pp. 3103
    • Rieger, B.1    Junge, W.2    Busch, K.B.3
  • 153
    • 1142274318 scopus 로고    scopus 로고
    • Proton transfer dynamics at the membrane/water interface: Dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier
    • Cherepanov DA, Junge W, Mulkidjanian AY. 2004. Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86:665-80
    • (2004) Biophys. J. , vol.86 , pp. 665-680
    • Cherepanov, D.A.1    Junge, W.2    Mulkidjanian, A.Y.3
  • 154
    • 0000899478 scopus 로고
    • Complete tracking of transient proton flow through active chloroplast ATP synthase
    • Junge W. 1987. Complete tracking of transient proton flow through active chloroplast ATP synthase. PNAS 84:7084-88
    • (1987) PNAS , vol.84 , pp. 7084-7088
    • Junge, W.1
  • 156
    • 0000256686 scopus 로고
    • Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis
    • Junesch U, Gräber P. 1987. Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. Biochim. Biophys. Acta 893:275-88
    • (1987) Biochim. Biophys. Acta , vol.893 , pp. 275-288
    • Junesch, U.1    Gräber, P.2
  • 157
    • 0000854423 scopus 로고
    • Modulation of coupling factor ATPase activity in intact chloroplasts, reversal of thiol modulation in the dark
    • Mills JD, Mitchell P. 1982. Modulation of coupling factor ATPase activity in intact chloroplasts, reversal of thiol modulation in the dark. Biochim. Biophys. Acta 679:75-83
    • (1982) Biochim. Biophys. Acta , vol.679 , pp. 75-83
    • Mills, J.D.1    Mitchell, P.2
  • 158
    • 0028168930 scopus 로고
    • Insertion of a "chloroplast-like" regulatory segment responsible for thiol modulation into γ-subunit of FOF1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC
    • Werner-Grüne S, Gunkel D, Schumann J, Strotmann H. 1994. Insertion of a "chloroplast-like" regulatory segment responsible for thiol modulation into γ-subunit of FOF1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC. Mol. Gen. Genet. 244:144-50
    • (1994) Mol. Gen. Genet. , vol.244 , pp. 144-150
    • Werner-Grüne, S.1    Gunkel, D.2    Schumann, J.3    Strotmann, H.4
  • 159
    • 0034725110 scopus 로고    scopus 로고
    • ATPase activity of a highly stable α3β3γ subcomplex of thermophilic F1 can be regulated by the introduced regulatory region of γ subunit of chloroplast F1
    • Bald D, Noji H, Stumpp MT, Yoshida M, Hisabori T. 2000. ATPase activity of a highly stable α3β3γ subcomplex of thermophilic F1 can be regulated by the introduced regulatory region of γ subunit of chloroplast F1. J. Biol. Chem. 275:12757-62
    • (2000) J. Biol. Chem. , vol.275 , pp. 12757-12762
    • Bald, D.1    Noji, H.2    Stumpp, M.T.3    Yoshida, M.4    Hisabori, T.5
  • 161
    • 84859762682 scopus 로고    scopus 로고
    • Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes
    • Konno H, Nakane T, Yoshida M, Ueoka-Nakanishi H, Hara S, Hisabori T. 2012. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes. Plant Cell Physiol. 53:626-34
    • (2012) Plant Cell Physiol. , vol.53 , pp. 626-634
    • Konno, H.1    Nakane, T.2    Yoshida, M.3    Ueoka-Nakanishi, H.4    Hara, S.5    Hisabori, T.6
  • 163
    • 0000228422 scopus 로고
    • A naturally occurring inhibitor of mitochondrial adenosine triphosphatase
    • Pullman ME, Monroy GC. 1963. A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. J. Biol. Chem. 238:3762-69
    • (1963) J. Biol. Chem. , vol.238 , pp. 3762-3769
    • Pullman, M.E.1    Monroy, G.C.2
  • 165
    • 84905662028 scopus 로고    scopus 로고
    • Pathway of binding of the intrinsically disordered mitochondrial inhibitorprotein to F1-ATPase
    • Bason JV, Montgomery MG, Leslie AG, Walker JE. 2014. Pathway of binding of the intrinsically disordered mitochondrial inhibitorprotein to F1-ATPase. PNAS 111:11305-10
    • (2014) PNAS , vol.111 , pp. 11305-11310
    • Bason, J.V.1    Montgomery, M.G.2    Leslie, A.G.3    Walker, J.E.4
  • 166
    • 0026563170 scopus 로고
    • Evolution of organellar proton-ATPases
    • Nelson N. 1992. Evolution of organellar proton-ATPases. Biochim. Biophys. Acta 1100:109-24
    • (1992) Biochim. Biophys. Acta , vol.1100 , pp. 109-124
    • Nelson, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.