-
1
-
-
70349333227
-
The evolutionary consequences of erroneous protein synthesis
-
Drummond D.A., Wilke C.O. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 2009, 10:715-724.
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 715-724
-
-
Drummond, D.A.1
Wilke, C.O.2
-
2
-
-
33344468695
-
Recoding in bacteriophages and bacterial IS elements
-
Baranov P.V., et al. Recoding in bacteriophages and bacterial IS elements. Trends Genet. 2006, 22:174-181.
-
(2006)
Trends Genet.
, vol.22
, pp. 174-181
-
-
Baranov, P.V.1
-
3
-
-
0037139583
-
Recoding: translational bifurcations in gene expression
-
Baranov P.V., et al. Recoding: translational bifurcations in gene expression. Gene 2002, 286:187-201.
-
(2002)
Gene
, vol.286
, pp. 187-201
-
-
Baranov, P.V.1
-
4
-
-
0029896020
-
Recoding: dynamic reprogramming of translation
-
Gesteland R.F., Atkins J.F. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 1996, 65:741-768.
-
(1996)
Annu. Rev. Biochem.
, vol.65
, pp. 741-768
-
-
Gesteland, R.F.1
Atkins, J.F.2
-
5
-
-
79955581828
-
Programmed ribosomal-1 frameshifting as a tradition: the bacterial transposable elements of the IS3 family
-
Springer, J.F. Atkins, R.F. Gesteland (Eds.)
-
Fayet O., Prere M.F. Programmed ribosomal-1 frameshifting as a tradition: the bacterial transposable elements of the IS3 family. Recoding: Expansion of Decoding Rules Enriches Gene Expression 2010, 259-280. Springer. J.F. Atkins, R.F. Gesteland (Eds.).
-
(2010)
Recoding: Expansion of Decoding Rules Enriches Gene Expression
, pp. 259-280
-
-
Fayet, O.1
Prere, M.F.2
-
7
-
-
0027477486
-
Translational frameshifting in the control of transposition in bacteria
-
Chandler M., Fayet O. Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 1993, 7:497-503.
-
(1993)
Mol. Microbiol.
, vol.7
, pp. 497-503
-
-
Chandler, M.1
Fayet, O.2
-
8
-
-
33646779223
-
Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV
-
Brierley I., Dos Ramos F.J. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 2006, 119:29-42.
-
(2006)
Virus Res.
, vol.119
, pp. 29-42
-
-
Brierley, I.1
Dos Ramos, F.J.2
-
9
-
-
84858173140
-
Targeting frameshifting in the human immunodeficiency virus
-
Brakier-Gingras L., et al. Targeting frameshifting in the human immunodeficiency virus. Expert Opin. Ther. Targets 2012, 16:249-258.
-
(2012)
Expert Opin. Ther. Targets
, vol.16
, pp. 249-258
-
-
Brakier-Gingras, L.1
-
10
-
-
30844443739
-
Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1
-
Dulude D., et al. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 2006, 345:127-136.
-
(2006)
Virology
, vol.345
, pp. 127-136
-
-
Dulude, D.1
-
11
-
-
0031901133
-
Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication
-
Hung M., et al. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J. Virol. 1998, 72:4819-4824.
-
(1998)
J. Virol.
, vol.72
, pp. 4819-4824
-
-
Hung, M.1
-
12
-
-
49649096646
-
PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals
-
Belew A.T., et al. PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals. BMC Genomics 2008, 9:339.
-
(2008)
BMC Genomics
, vol.9
, pp. 339
-
-
Belew, A.T.1
-
13
-
-
84898834675
-
Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway
-
Advani V.M., et al. Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway. Translation 2013, 1:e24418.
-
(2013)
Translation
, vol.1
, pp. e24418
-
-
Advani, V.M.1
-
14
-
-
84906561882
-
Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway
-
Belew A.T., et al. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 2014, 512:265-269.
-
(2014)
Nature
, vol.512
, pp. 265-269
-
-
Belew, A.T.1
-
15
-
-
84926645388
-
Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics
-
Belew A.T., Dinman J.D. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 2015, 14:172-178.
-
(2015)
Cell Cycle
, vol.14
, pp. 172-178
-
-
Belew, A.T.1
Dinman, J.D.2
-
16
-
-
15044348272
-
Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting
-
Manktelow E., et al. Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting. Nucleic Acids Res. 2005, 33:1553-1563.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 1553-1563
-
-
Manktelow, E.1
-
17
-
-
0035477279
-
Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting
-
Shigemoto K., et al. Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. Nucleic Acids Res. 2001, 29:4079-4088.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 4079-4088
-
-
Shigemoto, K.1
-
18
-
-
84868324214
-
Observation of dually decoded regions of the human genome using ribosome profiling data
-
Michel A.M., et al. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 2012, 22:2219-2229.
-
(2012)
Genome Res.
, vol.22
, pp. 2219-2229
-
-
Michel, A.M.1
-
19
-
-
77349093307
-
Pseudoknot-dependent programmed -1 ribosomal frameshifting: structures, mechanisms and models
-
Springer, J.F. Atkins, R.F. Gesteland (Eds.)
-
Brierley I., et al. Pseudoknot-dependent programmed -1 ribosomal frameshifting: structures, mechanisms and models. Recoding: Expansion of Decoding Rules Enriches Gene Expression 2010, 149-174. Springer. J.F. Atkins, R.F. Gesteland (Eds.).
-
(2010)
Recoding: Expansion of Decoding Rules Enriches Gene Expression
, pp. 149-174
-
-
Brierley, I.1
-
20
-
-
4644308292
-
Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides
-
Howard M.T., et al. Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides. RNA 2004, 10:1653-1661.
-
(2004)
RNA
, vol.10
, pp. 1653-1661
-
-
Howard, M.T.1
-
21
-
-
84896714434
-
Stimulation of ribosomal frameshifting by RNA G-quadruplex structures
-
Yu C.H., et al. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures. Nucleic Acids Res. 2014, 42:1887-1892.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 1887-1892
-
-
Yu, C.H.1
-
22
-
-
0028007434
-
RRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift
-
Larsen B., et al. rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift. J. Bacteriol. 1994, 176:6842-6851.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 6842-6851
-
-
Larsen, B.1
-
24
-
-
0027494569
-
Ribosomal pausing during translation of an RNA pseudoknot
-
Somogyi P., et al. Ribosomal pausing during translation of an RNA pseudoknot. Mol. Cell. Biol. 1993, 13:6931-6940.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 6931-6940
-
-
Somogyi, P.1
-
25
-
-
0033984933
-
Kinetics of ribosomal pausing during programmed -1 translational frameshifting
-
Lopinski J.D., et al. Kinetics of ribosomal pausing during programmed -1 translational frameshifting. Mol. Cell. Biol. 2000, 20:1095-1103.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 1095-1103
-
-
Lopinski, J.D.1
-
26
-
-
0026733573
-
Ribosomal movement impeded at a pseudoknot required for frameshifting
-
Tu C., et al. Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:8636-8640.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 8636-8640
-
-
Tu, C.1
-
27
-
-
84903197929
-
Programmed -1 frameshifting by kinetic partitioning during impeded translocation
-
Caliskan N., et al. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 2014, 157:1619-1631.
-
(2014)
Cell
, vol.157
, pp. 1619-1631
-
-
Caliskan, N.1
-
28
-
-
84923378894
-
Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways
-
Yan S., et al. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 2015, 160:870-881.
-
(2015)
Cell
, vol.160
, pp. 870-881
-
-
Yan, S.1
-
29
-
-
78651274466
-
The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting
-
Liao P.Y., et al. The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting. Nucleic Acids Res. 2011, 39:300-312.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 300-312
-
-
Liao, P.Y.1
-
30
-
-
0028217750
-
The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli
-
Yelverton E., et al. The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli. Mol. Microbiol. 1994, 11:303-313.
-
(1994)
Mol. Microbiol.
, vol.11
, pp. 303-313
-
-
Yelverton, E.1
-
31
-
-
84867904673
-
Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein
-
Fang Y., et al. Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2920-E2928.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E2920-E2928
-
-
Fang, Y.1
-
32
-
-
0022879094
-
Characterization of ribosomal frameshift events by protein sequence analysis
-
Dayhuff T.J., et al. Characterization of ribosomal frameshift events by protein sequence analysis. J. Biol. Chem. 1986, 261:7491-7500.
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 7491-7500
-
-
Dayhuff, T.J.1
-
33
-
-
84891781958
-
Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions
-
Jiang H., et al. Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions. Virology 2014, 450-451:213-221.
-
(2014)
Virology
, pp. 213-221
-
-
Jiang, H.1
-
34
-
-
85027939461
-
Dynamics of translation by single ribosomes through mRNA secondary structures
-
Chen C., et al. Dynamics of translation by single ribosomes through mRNA secondary structures. Nat. Struct. Mol. Biol. 2013, 20:582-588.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 582-588
-
-
Chen, C.1
-
35
-
-
84906794802
-
Dynamic pathways of -1 translational frameshifting
-
Chen J., et al. Dynamic pathways of -1 translational frameshifting. Nature 2014, 512:328-332.
-
(2014)
Nature
, vol.512
, pp. 328-332
-
-
Chen, J.1
-
36
-
-
84898802217
-
A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation
-
Kim H.K., et al. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5538-5543.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 5538-5543
-
-
Kim, H.K.1
-
37
-
-
0031577333
-
Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting
-
Brierley I., et al. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J. Mol. Biol. 1997, 270:360-373.
-
(1997)
J. Mol. Biol.
, vol.270
, pp. 360-373
-
-
Brierley, I.1
-
38
-
-
11844292767
-
MRNA helicase activity of the ribosome
-
Takyar S., et al. mRNA helicase activity of the ribosome. Cell 2005, 120:49-58.
-
(2005)
Cell
, vol.120
, pp. 49-58
-
-
Takyar, S.1
-
39
-
-
84903150358
-
Structured mRNA induces the ribosome into a hyper-rotated state
-
Qin P., et al. Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep. 2014, 15:185-190.
-
(2014)
EMBO Rep.
, vol.15
, pp. 185-190
-
-
Qin, P.1
-
40
-
-
0036282055
-
Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site
-
Fredrick K., Noller H.F. Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site. Mol. Cell 2002, 9:1125-1131.
-
(2002)
Mol. Cell
, vol.9
, pp. 1125-1131
-
-
Fredrick, K.1
Noller, H.F.2
-
41
-
-
79959676389
-
The ribosome uses two active mechanisms to unwind messenger RNA during translation
-
Qu X., et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 2011, 475:118-121.
-
(2011)
Nature
, vol.475
, pp. 118-121
-
-
Qu, X.1
-
42
-
-
41149155366
-
Following translation by single ribosomes one codon at a time
-
Wen J.D., et al. Following translation by single ribosomes one codon at a time. Nature 2008, 452:598-603.
-
(2008)
Nature
, vol.452
, pp. 598-603
-
-
Wen, J.D.1
-
43
-
-
33751103912
-
Structural basis for messenger RNA movement on the ribosome
-
Yusupova G., et al. Structural basis for messenger RNA movement on the ribosome. Nature 2006, 444:391-394.
-
(2006)
Nature
, vol.444
, pp. 391-394
-
-
Yusupova, G.1
-
44
-
-
84873637807
-
HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome
-
Mouzakis K.D., et al. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res. 2013, 41:1901-1913.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 1901-1913
-
-
Mouzakis, K.D.1
-
45
-
-
84355161447
-
An equilibrium-dependent retroviral mRNA switch regulates translational recoding
-
Houck-Loomis B., et al. An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature 2011, 480:561-564.
-
(2011)
Nature
, vol.480
, pp. 561-564
-
-
Houck-Loomis, B.1
-
46
-
-
84867036862
-
Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding
-
Ritchie D.B., et al. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:16167-16172.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 16167-16172
-
-
Ritchie, D.B.1
-
47
-
-
54549111418
-
KnotInFrame: prediction of -1 ribosomal frameshift events
-
Theis C., et al. KnotInFrame: prediction of -1 ribosomal frameshift events. Nucleic Acids Res. 2008, 36:6013-6020.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 6013-6020
-
-
Theis, C.1
-
48
-
-
0036711292
-
An 'integrated model' of programmed ribosomal frameshifting
-
Harger J.W., et al. An 'integrated model' of programmed ribosomal frameshifting. Trends Biochem. Sci. 2002, 27:448-454.
-
(2002)
Trends Biochem. Sci.
, vol.27
, pp. 448-454
-
-
Harger, J.W.1
-
49
-
-
84890179902
-
Regulation of gene expression by macrolide-induced ribosomal frameshifting
-
Gupta P., et al. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol. Cell 2013, 52:629-642.
-
(2013)
Mol. Cell
, vol.52
, pp. 629-642
-
-
Gupta, P.1
-
50
-
-
84890177778
-
Macrolide-induced ribosomal frameshifting: a new route to antibiotic resistance
-
Brierley I. Macrolide-induced ribosomal frameshifting: a new route to antibiotic resistance. Mol. Cell 2013, 52:613-615.
-
(2013)
Mol. Cell
, vol.52
, pp. 613-615
-
-
Brierley, I.1
-
51
-
-
84855849549
-
Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication
-
Beura L.K., et al. Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication. J. Virol. 2011, 85:12939-12949.
-
(2011)
J. Virol.
, vol.85
, pp. 12939-12949
-
-
Beura, L.K.1
-
52
-
-
80052298023
-
Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus
-
Kwak H., et al. Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus. PLoS ONE 2011, 6:e24067.
-
(2011)
PLoS ONE
, vol.6
, pp. e24067
-
-
Kwak, H.1
-
53
-
-
84857399085
-
The 5' UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed -1 ribosomal frameshift that generates HIV-1 enzymes
-
Charbonneau J., et al. The 5' UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed -1 ribosomal frameshift that generates HIV-1 enzymes. RNA 2012, 18:519-529.
-
(2012)
RNA
, vol.18
, pp. 519-529
-
-
Charbonneau, J.1
-
54
-
-
38349137949
-
The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation
-
Gendron K., et al. The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res. 2008, 36:30-40.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 30-40
-
-
Gendron, K.1
-
55
-
-
77953806388
-
Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting
-
Kobayashi Y., et al. Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting. J. Biol. Chem. 2010, 285:19776-19784.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 19776-19784
-
-
Kobayashi, Y.1
-
57
-
-
0024722501
-
Errors and alternatives in reading the universal genetic code
-
Parker J. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 1989, 53:273-298.
-
(1989)
Microbiol. Rev.
, vol.53
, pp. 273-298
-
-
Parker, J.1
-
58
-
-
84890674142
-
Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors
-
Manickam N., et al. Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. RNA 2014, 20:9-15.
-
(2014)
RNA
, vol.20
, pp. 9-15
-
-
Manickam, N.1
-
59
-
-
33845895536
-
The frequency of translational misreading errors in E. coli is largely determined by tRNA competition
-
Kramer E.B., Farabaugh P.J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 2007, 13:87-96.
-
(2007)
RNA
, vol.13
, pp. 87-96
-
-
Kramer, E.B.1
Farabaugh, P.J.2
-
60
-
-
0027104840
-
Translational accuracy and the fitness of bacteria
-
Kurland C.G. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 1992, 26:29-50.
-
(1992)
Annu. Rev. Genet.
, vol.26
, pp. 29-50
-
-
Kurland, C.G.1
-
61
-
-
0025355475
-
Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme
-
Tsuchihashi Z., Kornberg A. Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. U.S.A. 1990, 87:2516-2520.
-
(1990)
Proc. Natl. Acad. Sci. U.S.A.
, vol.87
, pp. 2516-2520
-
-
Tsuchihashi, Z.1
Kornberg, A.2
-
62
-
-
0023909946
-
A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60
-
Huang W.M., et al. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 1988, 239:1005-1012.
-
(1988)
Science
, vol.239
, pp. 1005-1012
-
-
Huang, W.M.1
-
63
-
-
84906224071
-
Evidence of efficient stop codon readthrough in four mammalian genes
-
Loughran G., et al. Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res. 2014, 42:8928-8938.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 8928-8938
-
-
Loughran, G.1
-
64
-
-
84899105556
-
Massive programmed translational jumping in mitochondria
-
Lang B.F., et al. Massive programmed translational jumping in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5926-5931.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 5926-5931
-
-
Lang, B.F.1
-
65
-
-
84904638535
-
High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide
-
Samatova E., et al. High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nat. Commun. 2014, 5:4459.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4459
-
-
Samatova, E.1
-
66
-
-
0026334230
-
Sequence and functional analysis of mutations in the gene encoding peptide-chain-release factor 2 of Escherichia coli
-
Mikuni O., et al. Sequence and functional analysis of mutations in the gene encoding peptide-chain-release factor 2 of Escherichia coli. Biochimie 1991, 73:1509-1516.
-
(1991)
Biochimie
, vol.73
, pp. 1509-1516
-
-
Mikuni, O.1
-
67
-
-
0028831608
-
Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme
-
Matsufuji S., et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 1995, 80:51-60.
-
(1995)
Cell
, vol.80
, pp. 51-60
-
-
Matsufuji, S.1
-
68
-
-
84908229074
-
Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis
-
Holtkamp W., et al. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Bioessays 2014, 36:908-918.
-
(2014)
Bioessays
, vol.36
, pp. 908-918
-
-
Holtkamp, W.1
-
69
-
-
34250220008
-
Observation of intersubunit movement of the ribosome in solution using FRET
-
Ermolenko D.N., et al. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 2007, 370:530-540.
-
(2007)
J. Mol. Biol.
, vol.370
, pp. 530-540
-
-
Ermolenko, D.N.1
-
70
-
-
0032947999
-
Ribosomal -1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG
-
Mejlhede N., et al. Ribosomal -1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG. J. Bacteriol. 1999, 181:2930-2937.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 2930-2937
-
-
Mejlhede, N.1
-
71
-
-
0023512767
-
An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV
-
Brierley I., et al. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987, 6:3779-3785.
-
(1987)
EMBO J.
, vol.6
, pp. 3779-3785
-
-
Brierley, I.1
-
72
-
-
0025304673
-
The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism
-
Bredenbeek P.J., et al. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 1990, 18:1825-1832.
-
(1990)
Nucleic Acids Res.
, vol.18
, pp. 1825-1832
-
-
Bredenbeek, P.J.1
-
73
-
-
0027722243
-
An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA
-
Herold J., Siddell S.G. An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res. 1993, 21:5838-5842.
-
(1993)
Nucleic Acids Res.
, vol.21
, pp. 5838-5842
-
-
Herold, J.1
Siddell, S.G.2
-
74
-
-
23044450885
-
An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus
-
Su M.C., et al. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res. 2005, 33:4265-4275.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 4265-4275
-
-
Su, M.C.1
-
75
-
-
45749109340
-
The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element
-
Pennell S., et al. The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. RNA 2008, 14:1366-1377.
-
(2008)
RNA
, vol.14
, pp. 1366-1377
-
-
Pennell, S.1
-
76
-
-
0026533645
-
Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus
-
Morikawa S., Bishop D.H. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology 1992, 186:389-397.
-
(1992)
Virology
, vol.186
, pp. 389-397
-
-
Morikawa, S.1
Bishop, D.H.2
-
77
-
-
34748821686
-
Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop
-
Marcheschi R.J., et al. Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop. J. Mol. Biol. 2007, 373:652-663.
-
(2007)
J. Mol. Biol.
, vol.373
, pp. 652-663
-
-
Marcheschi, R.J.1
-
78
-
-
0023870815
-
Characterization of ribosomal frameshifting in HIV-1 gag-pol expression
-
Jacks T., et al. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988, 331:280-283.
-
(1988)
Nature
, vol.331
, pp. 280-283
-
-
Jacks, T.1
-
79
-
-
24644473489
-
A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting
-
Cornish P.V., et al. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Proc. Natl. Acad. Sci U.S.A. 2005, 102:12694-12699.
-
(2005)
Proc. Natl. Acad. Sci U.S.A.
, vol.102
, pp. 12694-12699
-
-
Cornish, P.V.1
-
80
-
-
0037183520
-
Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae
-
Nixon P.L., et al. Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae. Biochemistry 2002, 41:10665-10674.
-
(2002)
Biochemistry
, vol.41
, pp. 10665-10674
-
-
Nixon, P.L.1
-
81
-
-
0026643735
-
Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation
-
Dinman J.D., Wickner R.B. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 1992, 66:3669-3676.
-
(1992)
J. Virol.
, vol.66
, pp. 3669-3676
-
-
Dinman, J.D.1
Wickner, R.B.2
-
82
-
-
0028108771
-
The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting
-
Marczinke B., et al. The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting. J. Virol. 1994, 68:5588-5595.
-
(1994)
J. Virol.
, vol.68
, pp. 5588-5595
-
-
Marczinke, B.1
-
83
-
-
0026040484
-
Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily
-
den Boon J.A., et al. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J. Virol. 1991, 65:2910-2920.
-
(1991)
J. Virol.
, vol.65
, pp. 2910-2920
-
-
den Boon, J.A.1
-
84
-
-
0025168429
-
The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related
-
Snijder E.J., et al. The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Res. 1990, 18:4535-4542.
-
(1990)
Nucleic Acids Res.
, vol.18
, pp. 4535-4542
-
-
Snijder, E.J.1
-
85
-
-
33646359444
-
A functional -1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene
-
Wills N.M., et al. A functional -1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J. Biol. Chem. 2006, 281:7082-7088.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 7082-7088
-
-
Wills, N.M.1
|