메뉴 건너뛰기




Volumn 40, Issue 5, 2015, Pages 265-274

Changed in translation: MRNA recoding by -1 programmed ribosomal frameshifting

Author keywords

Decoding; Gene expression; MRNA reading frame maintenance; Protein synthesis; Ribosome; Translation

Indexed keywords

CIS ACTING ELEMENT; CYTOKINE RECEPTOR; MESSENGER RNA; PROTEIN 1PRF; PROTEOME; TRANS ACTING FACTOR; UNCLASSIFIED DRUG;

EID: 84927912034     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.03.006     Document Type: Review
Times cited : (98)

References (85)
  • 1
    • 70349333227 scopus 로고    scopus 로고
    • The evolutionary consequences of erroneous protein synthesis
    • Drummond D.A., Wilke C.O. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 2009, 10:715-724.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 715-724
    • Drummond, D.A.1    Wilke, C.O.2
  • 2
    • 33344468695 scopus 로고    scopus 로고
    • Recoding in bacteriophages and bacterial IS elements
    • Baranov P.V., et al. Recoding in bacteriophages and bacterial IS elements. Trends Genet. 2006, 22:174-181.
    • (2006) Trends Genet. , vol.22 , pp. 174-181
    • Baranov, P.V.1
  • 3
    • 0037139583 scopus 로고    scopus 로고
    • Recoding: translational bifurcations in gene expression
    • Baranov P.V., et al. Recoding: translational bifurcations in gene expression. Gene 2002, 286:187-201.
    • (2002) Gene , vol.286 , pp. 187-201
    • Baranov, P.V.1
  • 4
    • 0029896020 scopus 로고    scopus 로고
    • Recoding: dynamic reprogramming of translation
    • Gesteland R.F., Atkins J.F. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 1996, 65:741-768.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 741-768
    • Gesteland, R.F.1    Atkins, J.F.2
  • 5
    • 79955581828 scopus 로고    scopus 로고
    • Programmed ribosomal-1 frameshifting as a tradition: the bacterial transposable elements of the IS3 family
    • Springer, J.F. Atkins, R.F. Gesteland (Eds.)
    • Fayet O., Prere M.F. Programmed ribosomal-1 frameshifting as a tradition: the bacterial transposable elements of the IS3 family. Recoding: Expansion of Decoding Rules Enriches Gene Expression 2010, 259-280. Springer. J.F. Atkins, R.F. Gesteland (Eds.).
    • (2010) Recoding: Expansion of Decoding Rules Enriches Gene Expression , pp. 259-280
    • Fayet, O.1    Prere, M.F.2
  • 7
    • 0027477486 scopus 로고
    • Translational frameshifting in the control of transposition in bacteria
    • Chandler M., Fayet O. Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 1993, 7:497-503.
    • (1993) Mol. Microbiol. , vol.7 , pp. 497-503
    • Chandler, M.1    Fayet, O.2
  • 8
    • 33646779223 scopus 로고    scopus 로고
    • Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV
    • Brierley I., Dos Ramos F.J. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 2006, 119:29-42.
    • (2006) Virus Res. , vol.119 , pp. 29-42
    • Brierley, I.1    Dos Ramos, F.J.2
  • 9
    • 84858173140 scopus 로고    scopus 로고
    • Targeting frameshifting in the human immunodeficiency virus
    • Brakier-Gingras L., et al. Targeting frameshifting in the human immunodeficiency virus. Expert Opin. Ther. Targets 2012, 16:249-258.
    • (2012) Expert Opin. Ther. Targets , vol.16 , pp. 249-258
    • Brakier-Gingras, L.1
  • 10
    • 30844443739 scopus 로고    scopus 로고
    • Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1
    • Dulude D., et al. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 2006, 345:127-136.
    • (2006) Virology , vol.345 , pp. 127-136
    • Dulude, D.1
  • 11
    • 0031901133 scopus 로고    scopus 로고
    • Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication
    • Hung M., et al. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J. Virol. 1998, 72:4819-4824.
    • (1998) J. Virol. , vol.72 , pp. 4819-4824
    • Hung, M.1
  • 12
    • 49649096646 scopus 로고    scopus 로고
    • PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals
    • Belew A.T., et al. PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals. BMC Genomics 2008, 9:339.
    • (2008) BMC Genomics , vol.9 , pp. 339
    • Belew, A.T.1
  • 13
    • 84898834675 scopus 로고    scopus 로고
    • Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway
    • Advani V.M., et al. Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway. Translation 2013, 1:e24418.
    • (2013) Translation , vol.1 , pp. e24418
    • Advani, V.M.1
  • 14
    • 84906561882 scopus 로고    scopus 로고
    • Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway
    • Belew A.T., et al. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 2014, 512:265-269.
    • (2014) Nature , vol.512 , pp. 265-269
    • Belew, A.T.1
  • 15
    • 84926645388 scopus 로고    scopus 로고
    • Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics
    • Belew A.T., Dinman J.D. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 2015, 14:172-178.
    • (2015) Cell Cycle , vol.14 , pp. 172-178
    • Belew, A.T.1    Dinman, J.D.2
  • 16
    • 15044348272 scopus 로고    scopus 로고
    • Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting
    • Manktelow E., et al. Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting. Nucleic Acids Res. 2005, 33:1553-1563.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 1553-1563
    • Manktelow, E.1
  • 17
    • 0035477279 scopus 로고    scopus 로고
    • Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting
    • Shigemoto K., et al. Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. Nucleic Acids Res. 2001, 29:4079-4088.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 4079-4088
    • Shigemoto, K.1
  • 18
    • 84868324214 scopus 로고    scopus 로고
    • Observation of dually decoded regions of the human genome using ribosome profiling data
    • Michel A.M., et al. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 2012, 22:2219-2229.
    • (2012) Genome Res. , vol.22 , pp. 2219-2229
    • Michel, A.M.1
  • 19
    • 77349093307 scopus 로고    scopus 로고
    • Pseudoknot-dependent programmed -1 ribosomal frameshifting: structures, mechanisms and models
    • Springer, J.F. Atkins, R.F. Gesteland (Eds.)
    • Brierley I., et al. Pseudoknot-dependent programmed -1 ribosomal frameshifting: structures, mechanisms and models. Recoding: Expansion of Decoding Rules Enriches Gene Expression 2010, 149-174. Springer. J.F. Atkins, R.F. Gesteland (Eds.).
    • (2010) Recoding: Expansion of Decoding Rules Enriches Gene Expression , pp. 149-174
    • Brierley, I.1
  • 20
    • 4644308292 scopus 로고    scopus 로고
    • Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides
    • Howard M.T., et al. Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides. RNA 2004, 10:1653-1661.
    • (2004) RNA , vol.10 , pp. 1653-1661
    • Howard, M.T.1
  • 21
    • 84896714434 scopus 로고    scopus 로고
    • Stimulation of ribosomal frameshifting by RNA G-quadruplex structures
    • Yu C.H., et al. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures. Nucleic Acids Res. 2014, 42:1887-1892.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 1887-1892
    • Yu, C.H.1
  • 22
    • 0028007434 scopus 로고
    • RRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift
    • Larsen B., et al. rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift. J. Bacteriol. 1994, 176:6842-6851.
    • (1994) J. Bacteriol. , vol.176 , pp. 6842-6851
    • Larsen, B.1
  • 24
    • 0027494569 scopus 로고
    • Ribosomal pausing during translation of an RNA pseudoknot
    • Somogyi P., et al. Ribosomal pausing during translation of an RNA pseudoknot. Mol. Cell. Biol. 1993, 13:6931-6940.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 6931-6940
    • Somogyi, P.1
  • 25
    • 0033984933 scopus 로고    scopus 로고
    • Kinetics of ribosomal pausing during programmed -1 translational frameshifting
    • Lopinski J.D., et al. Kinetics of ribosomal pausing during programmed -1 translational frameshifting. Mol. Cell. Biol. 2000, 20:1095-1103.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1095-1103
    • Lopinski, J.D.1
  • 26
    • 0026733573 scopus 로고
    • Ribosomal movement impeded at a pseudoknot required for frameshifting
    • Tu C., et al. Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:8636-8640.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 8636-8640
    • Tu, C.1
  • 27
    • 84903197929 scopus 로고    scopus 로고
    • Programmed -1 frameshifting by kinetic partitioning during impeded translocation
    • Caliskan N., et al. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 2014, 157:1619-1631.
    • (2014) Cell , vol.157 , pp. 1619-1631
    • Caliskan, N.1
  • 28
    • 84923378894 scopus 로고    scopus 로고
    • Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways
    • Yan S., et al. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 2015, 160:870-881.
    • (2015) Cell , vol.160 , pp. 870-881
    • Yan, S.1
  • 29
    • 78651274466 scopus 로고    scopus 로고
    • The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting
    • Liao P.Y., et al. The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting. Nucleic Acids Res. 2011, 39:300-312.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 300-312
    • Liao, P.Y.1
  • 30
    • 0028217750 scopus 로고
    • The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli
    • Yelverton E., et al. The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli. Mol. Microbiol. 1994, 11:303-313.
    • (1994) Mol. Microbiol. , vol.11 , pp. 303-313
    • Yelverton, E.1
  • 31
    • 84867904673 scopus 로고    scopus 로고
    • Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein
    • Fang Y., et al. Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2920-E2928.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2920-E2928
    • Fang, Y.1
  • 32
    • 0022879094 scopus 로고
    • Characterization of ribosomal frameshift events by protein sequence analysis
    • Dayhuff T.J., et al. Characterization of ribosomal frameshift events by protein sequence analysis. J. Biol. Chem. 1986, 261:7491-7500.
    • (1986) J. Biol. Chem. , vol.261 , pp. 7491-7500
    • Dayhuff, T.J.1
  • 33
    • 84891781958 scopus 로고    scopus 로고
    • Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions
    • Jiang H., et al. Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions. Virology 2014, 450-451:213-221.
    • (2014) Virology , pp. 213-221
    • Jiang, H.1
  • 34
    • 85027939461 scopus 로고    scopus 로고
    • Dynamics of translation by single ribosomes through mRNA secondary structures
    • Chen C., et al. Dynamics of translation by single ribosomes through mRNA secondary structures. Nat. Struct. Mol. Biol. 2013, 20:582-588.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 582-588
    • Chen, C.1
  • 35
    • 84906794802 scopus 로고    scopus 로고
    • Dynamic pathways of -1 translational frameshifting
    • Chen J., et al. Dynamic pathways of -1 translational frameshifting. Nature 2014, 512:328-332.
    • (2014) Nature , vol.512 , pp. 328-332
    • Chen, J.1
  • 36
    • 84898802217 scopus 로고    scopus 로고
    • A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation
    • Kim H.K., et al. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5538-5543.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5538-5543
    • Kim, H.K.1
  • 37
    • 0031577333 scopus 로고    scopus 로고
    • Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting
    • Brierley I., et al. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J. Mol. Biol. 1997, 270:360-373.
    • (1997) J. Mol. Biol. , vol.270 , pp. 360-373
    • Brierley, I.1
  • 38
    • 11844292767 scopus 로고    scopus 로고
    • MRNA helicase activity of the ribosome
    • Takyar S., et al. mRNA helicase activity of the ribosome. Cell 2005, 120:49-58.
    • (2005) Cell , vol.120 , pp. 49-58
    • Takyar, S.1
  • 39
    • 84903150358 scopus 로고    scopus 로고
    • Structured mRNA induces the ribosome into a hyper-rotated state
    • Qin P., et al. Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep. 2014, 15:185-190.
    • (2014) EMBO Rep. , vol.15 , pp. 185-190
    • Qin, P.1
  • 40
    • 0036282055 scopus 로고    scopus 로고
    • Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site
    • Fredrick K., Noller H.F. Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site. Mol. Cell 2002, 9:1125-1131.
    • (2002) Mol. Cell , vol.9 , pp. 1125-1131
    • Fredrick, K.1    Noller, H.F.2
  • 41
    • 79959676389 scopus 로고    scopus 로고
    • The ribosome uses two active mechanisms to unwind messenger RNA during translation
    • Qu X., et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 2011, 475:118-121.
    • (2011) Nature , vol.475 , pp. 118-121
    • Qu, X.1
  • 42
    • 41149155366 scopus 로고    scopus 로고
    • Following translation by single ribosomes one codon at a time
    • Wen J.D., et al. Following translation by single ribosomes one codon at a time. Nature 2008, 452:598-603.
    • (2008) Nature , vol.452 , pp. 598-603
    • Wen, J.D.1
  • 43
    • 33751103912 scopus 로고    scopus 로고
    • Structural basis for messenger RNA movement on the ribosome
    • Yusupova G., et al. Structural basis for messenger RNA movement on the ribosome. Nature 2006, 444:391-394.
    • (2006) Nature , vol.444 , pp. 391-394
    • Yusupova, G.1
  • 44
    • 84873637807 scopus 로고    scopus 로고
    • HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome
    • Mouzakis K.D., et al. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res. 2013, 41:1901-1913.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 1901-1913
    • Mouzakis, K.D.1
  • 45
    • 84355161447 scopus 로고    scopus 로고
    • An equilibrium-dependent retroviral mRNA switch regulates translational recoding
    • Houck-Loomis B., et al. An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature 2011, 480:561-564.
    • (2011) Nature , vol.480 , pp. 561-564
    • Houck-Loomis, B.1
  • 46
    • 84867036862 scopus 로고    scopus 로고
    • Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding
    • Ritchie D.B., et al. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:16167-16172.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 16167-16172
    • Ritchie, D.B.1
  • 47
    • 54549111418 scopus 로고    scopus 로고
    • KnotInFrame: prediction of -1 ribosomal frameshift events
    • Theis C., et al. KnotInFrame: prediction of -1 ribosomal frameshift events. Nucleic Acids Res. 2008, 36:6013-6020.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 6013-6020
    • Theis, C.1
  • 48
    • 0036711292 scopus 로고    scopus 로고
    • An 'integrated model' of programmed ribosomal frameshifting
    • Harger J.W., et al. An 'integrated model' of programmed ribosomal frameshifting. Trends Biochem. Sci. 2002, 27:448-454.
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 448-454
    • Harger, J.W.1
  • 49
    • 84890179902 scopus 로고    scopus 로고
    • Regulation of gene expression by macrolide-induced ribosomal frameshifting
    • Gupta P., et al. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol. Cell 2013, 52:629-642.
    • (2013) Mol. Cell , vol.52 , pp. 629-642
    • Gupta, P.1
  • 50
    • 84890177778 scopus 로고    scopus 로고
    • Macrolide-induced ribosomal frameshifting: a new route to antibiotic resistance
    • Brierley I. Macrolide-induced ribosomal frameshifting: a new route to antibiotic resistance. Mol. Cell 2013, 52:613-615.
    • (2013) Mol. Cell , vol.52 , pp. 613-615
    • Brierley, I.1
  • 51
    • 84855849549 scopus 로고    scopus 로고
    • Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication
    • Beura L.K., et al. Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication. J. Virol. 2011, 85:12939-12949.
    • (2011) J. Virol. , vol.85 , pp. 12939-12949
    • Beura, L.K.1
  • 52
    • 80052298023 scopus 로고    scopus 로고
    • Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus
    • Kwak H., et al. Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus. PLoS ONE 2011, 6:e24067.
    • (2011) PLoS ONE , vol.6 , pp. e24067
    • Kwak, H.1
  • 53
    • 84857399085 scopus 로고    scopus 로고
    • The 5' UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed -1 ribosomal frameshift that generates HIV-1 enzymes
    • Charbonneau J., et al. The 5' UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed -1 ribosomal frameshift that generates HIV-1 enzymes. RNA 2012, 18:519-529.
    • (2012) RNA , vol.18 , pp. 519-529
    • Charbonneau, J.1
  • 54
    • 38349137949 scopus 로고    scopus 로고
    • The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation
    • Gendron K., et al. The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res. 2008, 36:30-40.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 30-40
    • Gendron, K.1
  • 55
    • 77953806388 scopus 로고    scopus 로고
    • Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting
    • Kobayashi Y., et al. Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting. J. Biol. Chem. 2010, 285:19776-19784.
    • (2010) J. Biol. Chem. , vol.285 , pp. 19776-19784
    • Kobayashi, Y.1
  • 57
    • 0024722501 scopus 로고
    • Errors and alternatives in reading the universal genetic code
    • Parker J. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 1989, 53:273-298.
    • (1989) Microbiol. Rev. , vol.53 , pp. 273-298
    • Parker, J.1
  • 58
    • 84890674142 scopus 로고    scopus 로고
    • Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors
    • Manickam N., et al. Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. RNA 2014, 20:9-15.
    • (2014) RNA , vol.20 , pp. 9-15
    • Manickam, N.1
  • 59
    • 33845895536 scopus 로고    scopus 로고
    • The frequency of translational misreading errors in E. coli is largely determined by tRNA competition
    • Kramer E.B., Farabaugh P.J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 2007, 13:87-96.
    • (2007) RNA , vol.13 , pp. 87-96
    • Kramer, E.B.1    Farabaugh, P.J.2
  • 60
    • 0027104840 scopus 로고
    • Translational accuracy and the fitness of bacteria
    • Kurland C.G. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 1992, 26:29-50.
    • (1992) Annu. Rev. Genet. , vol.26 , pp. 29-50
    • Kurland, C.G.1
  • 61
    • 0025355475 scopus 로고
    • Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme
    • Tsuchihashi Z., Kornberg A. Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. U.S.A. 1990, 87:2516-2520.
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 2516-2520
    • Tsuchihashi, Z.1    Kornberg, A.2
  • 62
    • 0023909946 scopus 로고
    • A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60
    • Huang W.M., et al. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 1988, 239:1005-1012.
    • (1988) Science , vol.239 , pp. 1005-1012
    • Huang, W.M.1
  • 63
    • 84906224071 scopus 로고    scopus 로고
    • Evidence of efficient stop codon readthrough in four mammalian genes
    • Loughran G., et al. Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res. 2014, 42:8928-8938.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 8928-8938
    • Loughran, G.1
  • 64
    • 84899105556 scopus 로고    scopus 로고
    • Massive programmed translational jumping in mitochondria
    • Lang B.F., et al. Massive programmed translational jumping in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5926-5931.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5926-5931
    • Lang, B.F.1
  • 65
    • 84904638535 scopus 로고    scopus 로고
    • High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide
    • Samatova E., et al. High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nat. Commun. 2014, 5:4459.
    • (2014) Nat. Commun. , vol.5 , pp. 4459
    • Samatova, E.1
  • 66
    • 0026334230 scopus 로고
    • Sequence and functional analysis of mutations in the gene encoding peptide-chain-release factor 2 of Escherichia coli
    • Mikuni O., et al. Sequence and functional analysis of mutations in the gene encoding peptide-chain-release factor 2 of Escherichia coli. Biochimie 1991, 73:1509-1516.
    • (1991) Biochimie , vol.73 , pp. 1509-1516
    • Mikuni, O.1
  • 67
    • 0028831608 scopus 로고
    • Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme
    • Matsufuji S., et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 1995, 80:51-60.
    • (1995) Cell , vol.80 , pp. 51-60
    • Matsufuji, S.1
  • 68
    • 84908229074 scopus 로고    scopus 로고
    • Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis
    • Holtkamp W., et al. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Bioessays 2014, 36:908-918.
    • (2014) Bioessays , vol.36 , pp. 908-918
    • Holtkamp, W.1
  • 69
    • 34250220008 scopus 로고    scopus 로고
    • Observation of intersubunit movement of the ribosome in solution using FRET
    • Ermolenko D.N., et al. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 2007, 370:530-540.
    • (2007) J. Mol. Biol. , vol.370 , pp. 530-540
    • Ermolenko, D.N.1
  • 70
    • 0032947999 scopus 로고    scopus 로고
    • Ribosomal -1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG
    • Mejlhede N., et al. Ribosomal -1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG. J. Bacteriol. 1999, 181:2930-2937.
    • (1999) J. Bacteriol. , vol.181 , pp. 2930-2937
    • Mejlhede, N.1
  • 71
    • 0023512767 scopus 로고
    • An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV
    • Brierley I., et al. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987, 6:3779-3785.
    • (1987) EMBO J. , vol.6 , pp. 3779-3785
    • Brierley, I.1
  • 72
    • 0025304673 scopus 로고
    • The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism
    • Bredenbeek P.J., et al. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 1990, 18:1825-1832.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 1825-1832
    • Bredenbeek, P.J.1
  • 73
    • 0027722243 scopus 로고
    • An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA
    • Herold J., Siddell S.G. An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res. 1993, 21:5838-5842.
    • (1993) Nucleic Acids Res. , vol.21 , pp. 5838-5842
    • Herold, J.1    Siddell, S.G.2
  • 74
    • 23044450885 scopus 로고    scopus 로고
    • An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus
    • Su M.C., et al. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res. 2005, 33:4265-4275.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 4265-4275
    • Su, M.C.1
  • 75
    • 45749109340 scopus 로고    scopus 로고
    • The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element
    • Pennell S., et al. The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. RNA 2008, 14:1366-1377.
    • (2008) RNA , vol.14 , pp. 1366-1377
    • Pennell, S.1
  • 76
    • 0026533645 scopus 로고
    • Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus
    • Morikawa S., Bishop D.H. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology 1992, 186:389-397.
    • (1992) Virology , vol.186 , pp. 389-397
    • Morikawa, S.1    Bishop, D.H.2
  • 77
    • 34748821686 scopus 로고    scopus 로고
    • Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop
    • Marcheschi R.J., et al. Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop. J. Mol. Biol. 2007, 373:652-663.
    • (2007) J. Mol. Biol. , vol.373 , pp. 652-663
    • Marcheschi, R.J.1
  • 78
    • 0023870815 scopus 로고
    • Characterization of ribosomal frameshifting in HIV-1 gag-pol expression
    • Jacks T., et al. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988, 331:280-283.
    • (1988) Nature , vol.331 , pp. 280-283
    • Jacks, T.1
  • 79
    • 24644473489 scopus 로고    scopus 로고
    • A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting
    • Cornish P.V., et al. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Proc. Natl. Acad. Sci U.S.A. 2005, 102:12694-12699.
    • (2005) Proc. Natl. Acad. Sci U.S.A. , vol.102 , pp. 12694-12699
    • Cornish, P.V.1
  • 80
    • 0037183520 scopus 로고    scopus 로고
    • Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae
    • Nixon P.L., et al. Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae. Biochemistry 2002, 41:10665-10674.
    • (2002) Biochemistry , vol.41 , pp. 10665-10674
    • Nixon, P.L.1
  • 81
    • 0026643735 scopus 로고
    • Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation
    • Dinman J.D., Wickner R.B. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 1992, 66:3669-3676.
    • (1992) J. Virol. , vol.66 , pp. 3669-3676
    • Dinman, J.D.1    Wickner, R.B.2
  • 82
    • 0028108771 scopus 로고
    • The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting
    • Marczinke B., et al. The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting. J. Virol. 1994, 68:5588-5595.
    • (1994) J. Virol. , vol.68 , pp. 5588-5595
    • Marczinke, B.1
  • 83
    • 0026040484 scopus 로고
    • Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily
    • den Boon J.A., et al. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J. Virol. 1991, 65:2910-2920.
    • (1991) J. Virol. , vol.65 , pp. 2910-2920
    • den Boon, J.A.1
  • 84
    • 0025168429 scopus 로고
    • The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related
    • Snijder E.J., et al. The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Res. 1990, 18:4535-4542.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 4535-4542
    • Snijder, E.J.1
  • 85
    • 33646359444 scopus 로고    scopus 로고
    • A functional -1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene
    • Wills N.M., et al. A functional -1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J. Biol. Chem. 2006, 281:7082-7088.
    • (2006) J. Biol. Chem. , vol.281 , pp. 7082-7088
    • Wills, N.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.