메뉴 건너뛰기




Volumn 40, Issue 5, 2015, Pages 257-264

Integrator: Surprisingly diverse functions in gene expression

Author keywords

Integrator; Pause release; RNAPII CTD; Transcriptional activation; UsnRNA processing

Indexed keywords

PROTEIN INT; PROTEIN SPT5; RNA POLYMERASE II; SMALL UNTRANSLATED RNA; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; SMALL NUCLEAR RNA;

EID: 84927911840     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.03.005     Document Type: Review
Times cited : (77)

References (61)
  • 1
    • 26844493853 scopus 로고    scopus 로고
    • Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II
    • Baillat D., et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 2005, 123:265-276.
    • (2005) Cell , vol.123 , pp. 265-276
    • Baillat, D.1
  • 2
    • 34447321025 scopus 로고    scopus 로고
    • Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme
    • Jeronimo C., et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol. Cell 2007, 27:262-274.
    • (2007) Mol. Cell , vol.27 , pp. 262-274
    • Jeronimo, C.1
  • 3
    • 77249162697 scopus 로고    scopus 로고
    • Streamlined analysis schema for high-throughput identification of endogenous protein complexes
    • Malovannaya A., et al. Streamlined analysis schema for high-throughput identification of endogenous protein complexes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2431-2436.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 2431-2436
    • Malovannaya, A.1
  • 4
    • 79957575162 scopus 로고    scopus 로고
    • Analysis of the human endogenous coregulator complexome
    • Malovannaya A., et al. Analysis of the human endogenous coregulator complexome. Cell 2011, 145:787-799.
    • (2011) Cell , vol.145 , pp. 787-799
    • Malovannaya, A.1
  • 5
    • 84869798687 scopus 로고    scopus 로고
    • An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3'-end formation
    • Chen J., et al. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3'-end formation. RNA 2012, 18:2148-2156.
    • (2012) RNA , vol.18 , pp. 2148-2156
    • Chen, J.1
  • 6
    • 84888588009 scopus 로고    scopus 로고
    • The Mediator complex and transcription regulation
    • Poss Z.C., et al. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 2013, 48:575-608.
    • (2013) Crit. Rev. Biochem. Mol. Biol. , vol.48 , pp. 575-608
    • Poss, Z.C.1
  • 7
    • 84885858963 scopus 로고    scopus 로고
    • The multitalented Mediator complex
    • Carlsten J.O.P., et al. The multitalented Mediator complex. Trends Biochem. Sci. 2013, 38:531-537.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 531-537
    • Carlsten, J.O.P.1
  • 8
    • 84882259216 scopus 로고    scopus 로고
    • Non-mRNA 3' end formation: how the other half lives
    • Peart N., et al. Non-mRNA 3' end formation: how the other half lives. Wiley Interdiscip. Rev. RNA 2013, 4:491-506.
    • (2013) Wiley Interdiscip. Rev. RNA , vol.4 , pp. 491-506
    • Peart, N.1
  • 9
    • 84855880038 scopus 로고    scopus 로고
    • Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes
    • Egloff S., et al. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol. Cell 2012, 45:111-122.
    • (2012) Mol. Cell , vol.45 , pp. 111-122
    • Egloff, S.1
  • 10
    • 77955966729 scopus 로고    scopus 로고
    • SnRNA 3' end formation: the dawn of the Integrator complex
    • Chen J., Wagner E.J. snRNA 3' end formation: the dawn of the Integrator complex. Biochem. Soc. Trans. 2010, 38:1082-1087.
    • (2010) Biochem. Soc. Trans. , vol.38 , pp. 1082-1087
    • Chen, J.1    Wagner, E.J.2
  • 11
    • 84857883120 scopus 로고    scopus 로고
    • SnRNA 3' end formation requires heterodimeric association of integrator subunits
    • Albrecht T.R., Wagner E.J. snRNA 3' end formation requires heterodimeric association of integrator subunits. Mol. Cell. Biol. 2012, 32:1112-1123.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 1112-1123
    • Albrecht, T.R.1    Wagner, E.J.2
  • 12
    • 84899869788 scopus 로고    scopus 로고
    • Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery
    • Xiang K., et al. Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol. Cell. Biol. 2014, 34:1894-1910.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 1894-1910
    • Xiang, K.1
  • 13
    • 0037102538 scopus 로고    scopus 로고
    • Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family
    • Callebaut I., et al. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 2002, 30:3592-3601.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 3592-3601
    • Callebaut, I.1
  • 14
    • 66149187105 scopus 로고    scopus 로고
    • Transcription termination by nuclear RNA polymerases
    • Richard P., Manley J.L. Transcription termination by nuclear RNA polymerases. Genes Dev. 2009, 23:1247-1269.
    • (2009) Genes Dev. , vol.23 , pp. 1247-1269
    • Richard, P.1    Manley, J.L.2
  • 15
    • 78951491900 scopus 로고    scopus 로고
    • Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc)
    • Hung K-H., Stumph W.E. Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Crit. Rev. Biochem. Mol. Biol. 2011, 46:11-26.
    • (2011) Crit. Rev. Biochem. Mol. Biol. , vol.46 , pp. 11-26
    • Hung, K.-H.1    Stumph, W.E.2
  • 16
    • 43149102067 scopus 로고    scopus 로고
    • Transcriptional regulation of human small nuclear RNA genes
    • Jawdekar G.W., Henry R.W. Transcriptional regulation of human small nuclear RNA genes. Biochim. Biophys. Acta 2008, 1779:295-305.
    • (2008) Biochim. Biophys. Acta , vol.1779 , pp. 295-305
    • Jawdekar, G.W.1    Henry, R.W.2
  • 17
    • 0037450637 scopus 로고    scopus 로고
    • The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3' processing of U2 snRNA
    • Medlin J.E., et al. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3' processing of U2 snRNA. EMBO J. 2003, 22:925-934.
    • (2003) EMBO J. , vol.22 , pp. 925-934
    • Medlin, J.E.1
  • 18
    • 28644451014 scopus 로고    scopus 로고
    • P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes
    • Medlin J., et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 2005, 24:4154-4165.
    • (2005) EMBO J. , vol.24 , pp. 4154-4165
    • Medlin, J.1
  • 19
    • 0022102252 scopus 로고
    • Formation of the 3' end of U1 snRNA is directed by a conserved sequence located downstream of the coding region
    • Hernandez N. Formation of the 3' end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. EMBO J. 1985, 4:1827-1837.
    • (1985) EMBO J. , vol.4 , pp. 1827-1837
    • Hernandez, N.1
  • 20
    • 77954224687 scopus 로고    scopus 로고
    • The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain
    • Egloff S., et al. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J. Biol. Chem. 2010, 285:20564-20569.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20564-20569
    • Egloff, S.1
  • 21
    • 78751472594 scopus 로고    scopus 로고
    • A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3'-end formation
    • Ezzeddine N., et al. A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3'-end formation. Mol. Cell. Biol. 2011, 31:328-341.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 328-341
    • Ezzeddine, N.1
  • 22
    • 84891801498 scopus 로고    scopus 로고
    • Human snRNA genes use polyadenylation factors to promote efficient transcription termination
    • O'Reilly D., et al. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res. 2014, 42:264-275.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 264-275
    • O'Reilly, D.1
  • 23
    • 9644310314 scopus 로고    scopus 로고
    • The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II
    • Kim M., et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 2004, 432:517-522.
    • (2004) Nature , vol.432 , pp. 517-522
    • Kim, M.1
  • 24
    • 64749116042 scopus 로고    scopus 로고
    • Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation
    • Mosley A.L., et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 2009, 34:168-178.
    • (2009) Mol. Cell , vol.34 , pp. 168-178
    • Mosley, A.L.1
  • 25
    • 65549156025 scopus 로고    scopus 로고
    • TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II
    • Akhtar M.S., et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 2009, 34:387-393.
    • (2009) Mol. Cell , vol.34 , pp. 387-393
    • Akhtar, M.S.1
  • 26
    • 84904758006 scopus 로고    scopus 로고
    • Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD
    • Hsu P.L., et al. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J. Mol. Biol. 2014, 426:2970-2981.
    • (2014) J. Mol. Biol. , vol.426 , pp. 2970-2981
    • Hsu, P.L.1
  • 27
    • 84864831445 scopus 로고    scopus 로고
    • The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity
    • Xiang K., et al. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity. Nat. Commun. 2012, 3:946.
    • (2012) Nat. Commun. , vol.3 , pp. 946
    • Xiang, K.1
  • 28
    • 84906101596 scopus 로고    scopus 로고
    • RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation
    • Ni Z., et al. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat. Struct. Mol. Biol. 2014, 21:686-695.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 686-695
    • Ni, Z.1
  • 29
    • 84881540559 scopus 로고    scopus 로고
    • Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2
    • Forget D., et al. Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2. Nucleic Acids Res. 2013, 41:6881-6891.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 6881-6891
    • Forget, D.1
  • 30
    • 80053614676 scopus 로고    scopus 로고
    • Human GTPases associate with RNA polymerase II to mediate its nuclear import
    • Carré C., Shiekhattar R. Human GTPases associate with RNA polymerase II to mediate its nuclear import. Mol. Cell. Biol. 2011, 31:3953-3962.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 3953-3962
    • Carré, C.1    Shiekhattar, R.2
  • 31
    • 80053893272 scopus 로고    scopus 로고
    • GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein
    • Staresincic L., et al. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J. Biol. Chem. 2011, 286:35553-35561.
    • (2011) J. Biol. Chem. , vol.286 , pp. 35553-35561
    • Staresincic, L.1
  • 32
    • 84927912165 scopus 로고    scopus 로고
    • Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II
    • Wani S., et al. Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II. PLoS ONE 2014, 9:e106040.
    • (2014) PLoS ONE , vol.9 , pp. e106040
    • Wani, S.1
  • 33
    • 84900508949 scopus 로고    scopus 로고
    • Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing
    • Hsin J-P., et al. Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol. Cell. Biol. 2014, 34:2488-2498.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 2488-2498
    • Hsin, J.-P.1
  • 34
    • 84903592021 scopus 로고    scopus 로고
    • DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes
    • Yamamoto J., et al. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat. Commun. 2014, 5:4263.
    • (2014) Nat. Commun. , vol.5 , pp. 4263
    • Yamamoto, J.1
  • 35
    • 84856020988 scopus 로고    scopus 로고
    • Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins
    • Tsao D.C., et al. Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins. RNA 2012, 18:222-229.
    • (2012) RNA , vol.18 , pp. 222-229
    • Tsao, D.C.1
  • 36
    • 79960455840 scopus 로고    scopus 로고
    • Deciphering the RNA polymerase II CTD code in fission yeast
    • Schwer B., Shuman S. Deciphering the RNA polymerase II CTD code in fission yeast. Mol. Cell 2011, 43:311-318.
    • (2011) Mol. Cell , vol.43 , pp. 311-318
    • Schwer, B.1    Shuman, S.2
  • 37
    • 67650076835 scopus 로고    scopus 로고
    • Chromatin structure is implicated in 'late' elongation checkpoints on the U2 snRNA and beta-actin genes
    • Egloff S., et al. Chromatin structure is implicated in 'late' elongation checkpoints on the U2 snRNA and beta-actin genes. Mol. Cell. Biol. 2009, 29:4002-4013.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4002-4013
    • Egloff, S.1
  • 38
    • 84922394133 scopus 로고    scopus 로고
    • Integrator regulates transcriptional initiation and pause release following activation
    • Gardini A., et al. Integrator regulates transcriptional initiation and pause release following activation. Mol. Cell 2014, 1:1-12.
    • (2014) Mol. Cell , vol.1 , pp. 1-12
    • Gardini, A.1
  • 39
    • 84924431008 scopus 로고    scopus 로고
    • The Integrator complex controls the termination of transcription at diverse classes of gene targets
    • Skaar J.R., et al. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res. 2015, 25:288-305.
    • (2015) Cell Res. , vol.25 , pp. 288-305
    • Skaar, J.R.1
  • 40
    • 84923307955 scopus 로고    scopus 로고
    • Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes
    • Stadelmayer B., et al. Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. Nat. Commun. 2014, 5:5531.
    • (2014) Nat. Commun. , vol.5 , pp. 5531
    • Stadelmayer, B.1
  • 41
    • 70449717505 scopus 로고    scopus 로고
    • INTS3 controls the hSSB1-mediated DNA damage response
    • Skaar J.R., et al. INTS3 controls the hSSB1-mediated DNA damage response. J. Cell Biol. 2009, 187:25-32.
    • (2009) J. Cell Biol. , vol.187 , pp. 25-32
    • Skaar, J.R.1
  • 42
    • 69949138464 scopus 로고    scopus 로고
    • HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response
    • Li Y., et al. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J. Biol. Chem. 2009, 284:23525-23531.
    • (2009) J. Biol. Chem. , vol.284 , pp. 23525-23531
    • Li, Y.1
  • 43
    • 84887590010 scopus 로고    scopus 로고
    • A core hSSB1-INTS complex participates in the DNA damage response
    • Zhang F., et al. A core hSSB1-INTS complex participates in the DNA damage response. J. Cell Sci. 2013, 126:4850-4855.
    • (2013) J. Cell Sci. , vol.126 , pp. 4850-4855
    • Zhang, F.1
  • 44
    • 68349157361 scopus 로고    scopus 로고
    • SOSS complexes participate in the maintenance of genomic stability
    • Huang J., et al. SOSS complexes participate in the maintenance of genomic stability. Mol. Cell 2009, 35:384-393.
    • (2009) Mol. Cell , vol.35 , pp. 384-393
    • Huang, J.1
  • 45
    • 84877127927 scopus 로고    scopus 로고
    • Single strand DNA binding proteins 1 and 2 protect newly replicated telomeres
    • Gu P., et al. Single strand DNA binding proteins 1 and 2 protect newly replicated telomeres. Cell Res. 2013, 23:705-719.
    • (2013) Cell Res. , vol.23 , pp. 705-719
    • Gu, P.1
  • 46
    • 0033634972 scopus 로고    scopus 로고
    • Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes
    • Yu, a, et al. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 2000, 5:801-810.
    • (2000) Mol. Cell , vol.5 , pp. 801-810
    • Yu, A.1
  • 47
    • 0031896599 scopus 로고    scopus 로고
    • Metaphase fragility of the human RNU1 and RNU2 loci is induced by actinomycin D through a p53-dependent pathway
    • Yu, a, et al. Metaphase fragility of the human RNU1 and RNU2 loci is induced by actinomycin D through a p53-dependent pathway. Hum. Mol. Genet. 1998, 7:609-6017.
    • (1998) Hum. Mol. Genet. , vol.7 , pp. 609-6017
    • Yu, A.1
  • 48
    • 0031967150 scopus 로고    scopus 로고
    • Adenovirus type 12-induced fragility of the human RNU2 locus requires p53 function
    • Li Z., et al. Adenovirus type 12-induced fragility of the human RNU2 locus requires p53 function. J. Virol. 1998, 72:4183-4191.
    • (1998) J. Virol. , vol.72 , pp. 4183-4191
    • Li, Z.1
  • 49
    • 84859087611 scopus 로고    scopus 로고
    • R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
    • Ginno P.A., et al. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 2012, 45:814-825.
    • (2012) Mol. Cell , vol.45 , pp. 814-825
    • Ginno, P.A.1
  • 50
    • 84885081625 scopus 로고    scopus 로고
    • GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination
    • Ginno P.A., et al. GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 2013, 23:1590-1600.
    • (2013) Genome Res. , vol.23 , pp. 1590-1600
    • Ginno, P.A.1
  • 51
    • 79959345878 scopus 로고    scopus 로고
    • Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination
    • Skourti-Stathaki K., et al. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 2011, 42:794-805.
    • (2011) Mol. Cell , vol.42 , pp. 794-805
    • Skourti-Stathaki, K.1
  • 52
    • 84888991588 scopus 로고    scopus 로고
    • The RNA polymerase II carboxy-terminal domain (CTD) code
    • Eick D., Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013, 113:8456-8490.
    • (2013) Chem. Rev. , vol.113 , pp. 8456-8490
    • Eick, D.1    Geyer, M.2
  • 53
    • 84872853894 scopus 로고    scopus 로고
    • The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1
    • Yang S-H., et al. The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1. EMBO J. 2013, 32:126-139.
    • (2013) EMBO J. , vol.32 , pp. 126-139
    • Yang, S.-H.1
  • 54
    • 54149091257 scopus 로고    scopus 로고
    • Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
    • Marzluff W.F., et al. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 2008, 9:843-854.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 843-854
    • Marzluff, W.F.1
  • 55
  • 56
    • 84862206497 scopus 로고    scopus 로고
    • Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation
    • Hintermair C., et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 2012, 31:2784-2797.
    • (2012) EMBO J. , vol.31 , pp. 2784-2797
    • Hintermair, C.1
  • 57
    • 84862977456 scopus 로고    scopus 로고
    • CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
    • Mayer A., et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012, 336:1723-1725.
    • (2012) Science , vol.336 , pp. 1723-1725
    • Mayer, A.1
  • 58
    • 84900486090 scopus 로고    scopus 로고
    • RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells
    • Hsin J-P., et al. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. Elife 2014, 3:e02112.
    • (2014) Elife , vol.3 , pp. e02112
    • Hsin, J.-P.1
  • 59
    • 80555125095 scopus 로고    scopus 로고
    • RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing
    • Hsin J-P., et al. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Science 2011, 334:683-686.
    • (2011) Science , vol.334 , pp. 683-686
    • Hsin, J.-P.1
  • 60
    • 84865845346 scopus 로고    scopus 로고
    • Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1
    • Kubicek K., et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 2012, 26:1891-1896.
    • (2012) Genes Dev. , vol.26 , pp. 1891-1896
    • Kubicek, K.1
  • 61
    • 84896933783 scopus 로고    scopus 로고
    • The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle
    • Hanes S.D. The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. Biochim. Biophys. Acta 2014, 1839:316-333.
    • (2014) Biochim. Biophys. Acta , vol.1839 , pp. 316-333
    • Hanes, S.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.