-
1
-
-
26844493853
-
Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II
-
Baillat D., et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 2005, 123:265-276.
-
(2005)
Cell
, vol.123
, pp. 265-276
-
-
Baillat, D.1
-
2
-
-
34447321025
-
Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme
-
Jeronimo C., et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol. Cell 2007, 27:262-274.
-
(2007)
Mol. Cell
, vol.27
, pp. 262-274
-
-
Jeronimo, C.1
-
3
-
-
77249162697
-
Streamlined analysis schema for high-throughput identification of endogenous protein complexes
-
Malovannaya A., et al. Streamlined analysis schema for high-throughput identification of endogenous protein complexes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2431-2436.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 2431-2436
-
-
Malovannaya, A.1
-
4
-
-
79957575162
-
Analysis of the human endogenous coregulator complexome
-
Malovannaya A., et al. Analysis of the human endogenous coregulator complexome. Cell 2011, 145:787-799.
-
(2011)
Cell
, vol.145
, pp. 787-799
-
-
Malovannaya, A.1
-
5
-
-
84869798687
-
An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3'-end formation
-
Chen J., et al. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3'-end formation. RNA 2012, 18:2148-2156.
-
(2012)
RNA
, vol.18
, pp. 2148-2156
-
-
Chen, J.1
-
6
-
-
84888588009
-
The Mediator complex and transcription regulation
-
Poss Z.C., et al. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 2013, 48:575-608.
-
(2013)
Crit. Rev. Biochem. Mol. Biol.
, vol.48
, pp. 575-608
-
-
Poss, Z.C.1
-
7
-
-
84885858963
-
The multitalented Mediator complex
-
Carlsten J.O.P., et al. The multitalented Mediator complex. Trends Biochem. Sci. 2013, 38:531-537.
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 531-537
-
-
Carlsten, J.O.P.1
-
8
-
-
84882259216
-
Non-mRNA 3' end formation: how the other half lives
-
Peart N., et al. Non-mRNA 3' end formation: how the other half lives. Wiley Interdiscip. Rev. RNA 2013, 4:491-506.
-
(2013)
Wiley Interdiscip. Rev. RNA
, vol.4
, pp. 491-506
-
-
Peart, N.1
-
9
-
-
84855880038
-
Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes
-
Egloff S., et al. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol. Cell 2012, 45:111-122.
-
(2012)
Mol. Cell
, vol.45
, pp. 111-122
-
-
Egloff, S.1
-
10
-
-
77955966729
-
SnRNA 3' end formation: the dawn of the Integrator complex
-
Chen J., Wagner E.J. snRNA 3' end formation: the dawn of the Integrator complex. Biochem. Soc. Trans. 2010, 38:1082-1087.
-
(2010)
Biochem. Soc. Trans.
, vol.38
, pp. 1082-1087
-
-
Chen, J.1
Wagner, E.J.2
-
11
-
-
84857883120
-
SnRNA 3' end formation requires heterodimeric association of integrator subunits
-
Albrecht T.R., Wagner E.J. snRNA 3' end formation requires heterodimeric association of integrator subunits. Mol. Cell. Biol. 2012, 32:1112-1123.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1112-1123
-
-
Albrecht, T.R.1
Wagner, E.J.2
-
12
-
-
84899869788
-
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery
-
Xiang K., et al. Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol. Cell. Biol. 2014, 34:1894-1910.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 1894-1910
-
-
Xiang, K.1
-
13
-
-
0037102538
-
Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family
-
Callebaut I., et al. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 2002, 30:3592-3601.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 3592-3601
-
-
Callebaut, I.1
-
14
-
-
66149187105
-
Transcription termination by nuclear RNA polymerases
-
Richard P., Manley J.L. Transcription termination by nuclear RNA polymerases. Genes Dev. 2009, 23:1247-1269.
-
(2009)
Genes Dev.
, vol.23
, pp. 1247-1269
-
-
Richard, P.1
Manley, J.L.2
-
15
-
-
78951491900
-
Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc)
-
Hung K-H., Stumph W.E. Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Crit. Rev. Biochem. Mol. Biol. 2011, 46:11-26.
-
(2011)
Crit. Rev. Biochem. Mol. Biol.
, vol.46
, pp. 11-26
-
-
Hung, K.-H.1
Stumph, W.E.2
-
16
-
-
43149102067
-
Transcriptional regulation of human small nuclear RNA genes
-
Jawdekar G.W., Henry R.W. Transcriptional regulation of human small nuclear RNA genes. Biochim. Biophys. Acta 2008, 1779:295-305.
-
(2008)
Biochim. Biophys. Acta
, vol.1779
, pp. 295-305
-
-
Jawdekar, G.W.1
Henry, R.W.2
-
17
-
-
0037450637
-
The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3' processing of U2 snRNA
-
Medlin J.E., et al. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3' processing of U2 snRNA. EMBO J. 2003, 22:925-934.
-
(2003)
EMBO J.
, vol.22
, pp. 925-934
-
-
Medlin, J.E.1
-
18
-
-
28644451014
-
P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes
-
Medlin J., et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 2005, 24:4154-4165.
-
(2005)
EMBO J.
, vol.24
, pp. 4154-4165
-
-
Medlin, J.1
-
19
-
-
0022102252
-
Formation of the 3' end of U1 snRNA is directed by a conserved sequence located downstream of the coding region
-
Hernandez N. Formation of the 3' end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. EMBO J. 1985, 4:1827-1837.
-
(1985)
EMBO J.
, vol.4
, pp. 1827-1837
-
-
Hernandez, N.1
-
20
-
-
77954224687
-
The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain
-
Egloff S., et al. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J. Biol. Chem. 2010, 285:20564-20569.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 20564-20569
-
-
Egloff, S.1
-
21
-
-
78751472594
-
A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3'-end formation
-
Ezzeddine N., et al. A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3'-end formation. Mol. Cell. Biol. 2011, 31:328-341.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 328-341
-
-
Ezzeddine, N.1
-
22
-
-
84891801498
-
Human snRNA genes use polyadenylation factors to promote efficient transcription termination
-
O'Reilly D., et al. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res. 2014, 42:264-275.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 264-275
-
-
O'Reilly, D.1
-
23
-
-
9644310314
-
The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II
-
Kim M., et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 2004, 432:517-522.
-
(2004)
Nature
, vol.432
, pp. 517-522
-
-
Kim, M.1
-
24
-
-
64749116042
-
Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation
-
Mosley A.L., et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 2009, 34:168-178.
-
(2009)
Mol. Cell
, vol.34
, pp. 168-178
-
-
Mosley, A.L.1
-
25
-
-
65549156025
-
TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II
-
Akhtar M.S., et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 2009, 34:387-393.
-
(2009)
Mol. Cell
, vol.34
, pp. 387-393
-
-
Akhtar, M.S.1
-
26
-
-
84904758006
-
Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD
-
Hsu P.L., et al. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J. Mol. Biol. 2014, 426:2970-2981.
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 2970-2981
-
-
Hsu, P.L.1
-
27
-
-
84864831445
-
The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity
-
Xiang K., et al. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity. Nat. Commun. 2012, 3:946.
-
(2012)
Nat. Commun.
, vol.3
, pp. 946
-
-
Xiang, K.1
-
28
-
-
84906101596
-
RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation
-
Ni Z., et al. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat. Struct. Mol. Biol. 2014, 21:686-695.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 686-695
-
-
Ni, Z.1
-
29
-
-
84881540559
-
Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2
-
Forget D., et al. Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2. Nucleic Acids Res. 2013, 41:6881-6891.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 6881-6891
-
-
Forget, D.1
-
30
-
-
80053614676
-
Human GTPases associate with RNA polymerase II to mediate its nuclear import
-
Carré C., Shiekhattar R. Human GTPases associate with RNA polymerase II to mediate its nuclear import. Mol. Cell. Biol. 2011, 31:3953-3962.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 3953-3962
-
-
Carré, C.1
Shiekhattar, R.2
-
31
-
-
80053893272
-
GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein
-
Staresincic L., et al. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J. Biol. Chem. 2011, 286:35553-35561.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 35553-35561
-
-
Staresincic, L.1
-
32
-
-
84927912165
-
Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II
-
Wani S., et al. Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II. PLoS ONE 2014, 9:e106040.
-
(2014)
PLoS ONE
, vol.9
, pp. e106040
-
-
Wani, S.1
-
33
-
-
84900508949
-
Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing
-
Hsin J-P., et al. Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol. Cell. Biol. 2014, 34:2488-2498.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 2488-2498
-
-
Hsin, J.-P.1
-
34
-
-
84903592021
-
DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes
-
Yamamoto J., et al. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat. Commun. 2014, 5:4263.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4263
-
-
Yamamoto, J.1
-
35
-
-
84856020988
-
Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins
-
Tsao D.C., et al. Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins. RNA 2012, 18:222-229.
-
(2012)
RNA
, vol.18
, pp. 222-229
-
-
Tsao, D.C.1
-
36
-
-
79960455840
-
Deciphering the RNA polymerase II CTD code in fission yeast
-
Schwer B., Shuman S. Deciphering the RNA polymerase II CTD code in fission yeast. Mol. Cell 2011, 43:311-318.
-
(2011)
Mol. Cell
, vol.43
, pp. 311-318
-
-
Schwer, B.1
Shuman, S.2
-
37
-
-
67650076835
-
Chromatin structure is implicated in 'late' elongation checkpoints on the U2 snRNA and beta-actin genes
-
Egloff S., et al. Chromatin structure is implicated in 'late' elongation checkpoints on the U2 snRNA and beta-actin genes. Mol. Cell. Biol. 2009, 29:4002-4013.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4002-4013
-
-
Egloff, S.1
-
38
-
-
84922394133
-
Integrator regulates transcriptional initiation and pause release following activation
-
Gardini A., et al. Integrator regulates transcriptional initiation and pause release following activation. Mol. Cell 2014, 1:1-12.
-
(2014)
Mol. Cell
, vol.1
, pp. 1-12
-
-
Gardini, A.1
-
39
-
-
84924431008
-
The Integrator complex controls the termination of transcription at diverse classes of gene targets
-
Skaar J.R., et al. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res. 2015, 25:288-305.
-
(2015)
Cell Res.
, vol.25
, pp. 288-305
-
-
Skaar, J.R.1
-
40
-
-
84923307955
-
Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes
-
Stadelmayer B., et al. Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. Nat. Commun. 2014, 5:5531.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5531
-
-
Stadelmayer, B.1
-
41
-
-
70449717505
-
INTS3 controls the hSSB1-mediated DNA damage response
-
Skaar J.R., et al. INTS3 controls the hSSB1-mediated DNA damage response. J. Cell Biol. 2009, 187:25-32.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 25-32
-
-
Skaar, J.R.1
-
42
-
-
69949138464
-
HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response
-
Li Y., et al. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J. Biol. Chem. 2009, 284:23525-23531.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 23525-23531
-
-
Li, Y.1
-
43
-
-
84887590010
-
A core hSSB1-INTS complex participates in the DNA damage response
-
Zhang F., et al. A core hSSB1-INTS complex participates in the DNA damage response. J. Cell Sci. 2013, 126:4850-4855.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 4850-4855
-
-
Zhang, F.1
-
44
-
-
68349157361
-
SOSS complexes participate in the maintenance of genomic stability
-
Huang J., et al. SOSS complexes participate in the maintenance of genomic stability. Mol. Cell 2009, 35:384-393.
-
(2009)
Mol. Cell
, vol.35
, pp. 384-393
-
-
Huang, J.1
-
45
-
-
84877127927
-
Single strand DNA binding proteins 1 and 2 protect newly replicated telomeres
-
Gu P., et al. Single strand DNA binding proteins 1 and 2 protect newly replicated telomeres. Cell Res. 2013, 23:705-719.
-
(2013)
Cell Res.
, vol.23
, pp. 705-719
-
-
Gu, P.1
-
46
-
-
0033634972
-
Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes
-
Yu, a, et al. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 2000, 5:801-810.
-
(2000)
Mol. Cell
, vol.5
, pp. 801-810
-
-
Yu, A.1
-
47
-
-
0031896599
-
Metaphase fragility of the human RNU1 and RNU2 loci is induced by actinomycin D through a p53-dependent pathway
-
Yu, a, et al. Metaphase fragility of the human RNU1 and RNU2 loci is induced by actinomycin D through a p53-dependent pathway. Hum. Mol. Genet. 1998, 7:609-6017.
-
(1998)
Hum. Mol. Genet.
, vol.7
, pp. 609-6017
-
-
Yu, A.1
-
48
-
-
0031967150
-
Adenovirus type 12-induced fragility of the human RNU2 locus requires p53 function
-
Li Z., et al. Adenovirus type 12-induced fragility of the human RNU2 locus requires p53 function. J. Virol. 1998, 72:4183-4191.
-
(1998)
J. Virol.
, vol.72
, pp. 4183-4191
-
-
Li, Z.1
-
49
-
-
84859087611
-
R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
-
Ginno P.A., et al. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 2012, 45:814-825.
-
(2012)
Mol. Cell
, vol.45
, pp. 814-825
-
-
Ginno, P.A.1
-
50
-
-
84885081625
-
GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination
-
Ginno P.A., et al. GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 2013, 23:1590-1600.
-
(2013)
Genome Res.
, vol.23
, pp. 1590-1600
-
-
Ginno, P.A.1
-
51
-
-
79959345878
-
Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination
-
Skourti-Stathaki K., et al. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 2011, 42:794-805.
-
(2011)
Mol. Cell
, vol.42
, pp. 794-805
-
-
Skourti-Stathaki, K.1
-
52
-
-
84888991588
-
The RNA polymerase II carboxy-terminal domain (CTD) code
-
Eick D., Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013, 113:8456-8490.
-
(2013)
Chem. Rev.
, vol.113
, pp. 8456-8490
-
-
Eick, D.1
Geyer, M.2
-
53
-
-
84872853894
-
The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1
-
Yang S-H., et al. The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1. EMBO J. 2013, 32:126-139.
-
(2013)
EMBO J.
, vol.32
, pp. 126-139
-
-
Yang, S.-H.1
-
54
-
-
54149091257
-
Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
-
Marzluff W.F., et al. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 2008, 9:843-854.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 843-854
-
-
Marzluff, W.F.1
-
56
-
-
84862206497
-
Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation
-
Hintermair C., et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 2012, 31:2784-2797.
-
(2012)
EMBO J.
, vol.31
, pp. 2784-2797
-
-
Hintermair, C.1
-
57
-
-
84862977456
-
CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
-
Mayer A., et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012, 336:1723-1725.
-
(2012)
Science
, vol.336
, pp. 1723-1725
-
-
Mayer, A.1
-
58
-
-
84900486090
-
RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells
-
Hsin J-P., et al. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. Elife 2014, 3:e02112.
-
(2014)
Elife
, vol.3
, pp. e02112
-
-
Hsin, J.-P.1
-
59
-
-
80555125095
-
RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing
-
Hsin J-P., et al. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Science 2011, 334:683-686.
-
(2011)
Science
, vol.334
, pp. 683-686
-
-
Hsin, J.-P.1
-
60
-
-
84865845346
-
Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1
-
Kubicek K., et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 2012, 26:1891-1896.
-
(2012)
Genes Dev.
, vol.26
, pp. 1891-1896
-
-
Kubicek, K.1
-
61
-
-
84896933783
-
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle
-
Hanes S.D. The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. Biochim. Biophys. Acta 2014, 1839:316-333.
-
(2014)
Biochim. Biophys. Acta
, vol.1839
, pp. 316-333
-
-
Hanes, S.D.1
|