메뉴 건너뛰기




Volumn 40, Issue 5, 2015, Pages 248-256

RNA-RNA interactions in gene regulation: The coding and noncoding players

Author keywords

Circular RNAs; Coding RNA; Interaction; Long noncoding RNA; MicroRNA; RNA; Sponges

Indexed keywords

HIGH MOBILITY GROUP A2 PROTEIN; LONG UNTRANSLATED RNA; MESSENGER RNA; MICRORNA; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; TRANSFORMING GROWTH FACTOR BETA RECEPTOR 3; UNTRANSLATED RNA; RNA;

EID: 84927911425     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.03.001     Document Type: Review
Times cited : (224)

References (84)
  • 1
    • 84897128298 scopus 로고    scopus 로고
    • The noncoding RNA revolution-trashing old rules to forge new ones
    • Cech T.R., Steitz J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014, 157:77-94.
    • (2014) Cell , vol.157 , pp. 77-94
    • Cech, T.R.1    Steitz, J.A.2
  • 3
    • 84876859781 scopus 로고    scopus 로고
    • Dogma derailed: the many influences of RNA on the genome
    • Sabin L.R., et al. Dogma derailed: the many influences of RNA on the genome. Mol. Cell 2013, 49:783-794.
    • (2013) Mol. Cell , vol.49 , pp. 783-794
    • Sabin, L.R.1
  • 4
    • 78751477191 scopus 로고    scopus 로고
    • Gene silencing by microRNAs: contributions of translational repression and mRNA decay
    • Huntzinger E., Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011, 12:99-110.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 99-110
    • Huntzinger, E.1    Izaurralde, E.2
  • 5
    • 84861904178 scopus 로고    scopus 로고
    • Genome regulation by long noncoding RNAs
    • Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012, 81:145-166.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 145-166
    • Rinn, J.L.1    Chang, H.Y.2
  • 6
    • 21044444993 scopus 로고    scopus 로고
    • Towards understanding the catalytic core structure of the spliceosome
    • Butcher S.E., Brow D.A. Towards understanding the catalytic core structure of the spliceosome. Biochem. Soc. Trans. 2005, 33:447-449.
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 447-449
    • Butcher, S.E.1    Brow, D.A.2
  • 7
    • 2942610793 scopus 로고    scopus 로고
    • RNA structure and function in C/D and H/ACA s(no)RNPs
    • Henras A.K., et al. RNA structure and function in C/D and H/ACA s(no)RNPs. Curr. Opin. Struct. Biol. 2004, 14:335-343.
    • (2004) Curr. Opin. Struct. Biol. , vol.14 , pp. 335-343
    • Henras, A.K.1
  • 8
    • 13244290067 scopus 로고    scopus 로고
    • Complex management: RNA editing in trypanosomes
    • Stuart K.D., et al. Complex management: RNA editing in trypanosomes. Trends Biochem. Sci. 2005, 30:97-105.
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 97-105
    • Stuart, K.D.1
  • 9
    • 70449753811 scopus 로고    scopus 로고
    • RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
    • Hale C.R., et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009, 139:945-956.
    • (2009) Cell , vol.139 , pp. 945-956
    • Hale, C.R.1
  • 10
    • 84856792673 scopus 로고    scopus 로고
    • Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs
    • Hale C.R., et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 2012, 45:292-302.
    • (2012) Mol. Cell , vol.45 , pp. 292-302
    • Hale, C.R.1
  • 11
    • 0027751663 scopus 로고
    • The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • Lee R.C., et al. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843-854.
    • (1993) Cell , vol.75 , pp. 843-854
    • Lee, R.C.1
  • 12
    • 0032506226 scopus 로고    scopus 로고
    • Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA
    • Waterhouse P.M., et al. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:13959-13964.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 13959-13964
    • Waterhouse, P.M.1
  • 13
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
    • Fire A., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
    • (1998) Nature , vol.391 , pp. 806-811
    • Fire, A.1
  • 14
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 15
    • 49949116902 scopus 로고    scopus 로고
    • The impact of microRNAs on protein output
    • Baek D., et al. The impact of microRNAs on protein output. Nature 2008, 455:64-71.
    • (2008) Nature , vol.455 , pp. 64-71
    • Baek, D.1
  • 16
    • 36749026906 scopus 로고    scopus 로고
    • Switching from repression to activation: microRNAs can up-regulate translation
    • Vasudevan S., et al. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007, 318:1931-1934.
    • (2007) Science , vol.318 , pp. 1931-1934
    • Vasudevan, S.1
  • 17
    • 43449090367 scopus 로고    scopus 로고
    • MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation
    • Orom U.A., et al. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 2008, 30:460-471.
    • (2008) Mol. Cell , vol.30 , pp. 460-471
    • Orom, U.A.1
  • 18
    • 58049217312 scopus 로고    scopus 로고
    • MicroRNA-122 stimulates translation of hepatitis C virus RNA
    • Henke J.I., et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008, 27:3300-3310.
    • (2008) EMBO J. , vol.27 , pp. 3300-3310
    • Henke, J.I.1
  • 19
    • 3242736704 scopus 로고    scopus 로고
    • Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs
    • Meister G., et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 2004, 15:185-197.
    • (2004) Mol. Cell , vol.15 , pp. 185-197
    • Meister, G.1
  • 20
    • 35548971658 scopus 로고    scopus 로고
    • MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells
    • Politz J.C., et al. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18957-18962.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18957-18962
    • Politz, J.C.1
  • 21
    • 77956278708 scopus 로고    scopus 로고
    • Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers
    • Liao J.Y., et al. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS ONE 2010, 5:e10563.
    • (2010) PLoS ONE , vol.5 , pp. e10563
    • Liao, J.Y.1
  • 22
    • 79953003549 scopus 로고    scopus 로고
    • Nuclear and cytoplasmic localization of neural stem cell microRNAs
    • Jeffries C.D., et al. Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 2011, 17:675-686.
    • (2011) RNA , vol.17 , pp. 675-686
    • Jeffries, C.D.1
  • 23
    • 33846699083 scopus 로고    scopus 로고
    • A hexanucleotide element directs microRNA nuclear import
    • Hwang H.W., et al. A hexanucleotide element directs microRNA nuclear import. Science 2007, 315:97-100.
    • (2007) Science , vol.315 , pp. 97-100
    • Hwang, H.W.1
  • 24
    • 55849135596 scopus 로고    scopus 로고
    • MicroRNA-directed transcriptional gene silencing in mammalian cells
    • Kim D.H., et al. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16230-16235.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 16230-16235
    • Kim, D.H.1
  • 25
    • 40349094597 scopus 로고    scopus 로고
    • MicroRNA-373 induces expression of genes with complementary promoter sequences
    • Place R.F., et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:1608-1613.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 1608-1613
    • Place, R.F.1
  • 26
    • 59349087552 scopus 로고    scopus 로고
    • Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs
    • Weinmann L., et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 2009, 136:496-507.
    • (2009) Cell , vol.136 , pp. 496-507
    • Weinmann, L.1
  • 27
    • 15544363403 scopus 로고    scopus 로고
    • Specific and potent RNAi in the nucleus of human cells
    • Robb G.B., et al. Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 2005, 12:133-137.
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 133-137
    • Robb, G.B.1
  • 28
    • 33748339362 scopus 로고    scopus 로고
    • Involvement of AGO1 and AGO2 in mammalian transcriptional silencing
    • Janowski B.A., et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 2006, 13:787-792.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 787-792
    • Janowski, B.A.1
  • 29
    • 33748368912 scopus 로고    scopus 로고
    • Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells
    • Kim D.H., et al. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 2006, 13:793-797.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 793-797
    • Kim, D.H.1
  • 30
    • 67650299463 scopus 로고    scopus 로고
    • Control of alternative splicing through siRNA-mediated transcriptional gene silencing
    • Allo M., et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 2009, 16:717-724.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 717-724
    • Allo, M.1
  • 31
    • 84914674878 scopus 로고    scopus 로고
    • Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells
    • Allo M., et al. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15622-15629.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 15622-15629
    • Allo, M.1
  • 32
    • 41149112564 scopus 로고    scopus 로고
    • A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition
    • Beltran M., et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008, 22:756-769.
    • (2008) Genes Dev. , vol.22 , pp. 756-769
    • Beltran, M.1
  • 33
    • 79960521632 scopus 로고    scopus 로고
    • Extensive relationship between antisense transcription and alternative splicing in the human genome
    • Morrissy A.S., et al. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 2011, 21:1203-1212.
    • (2011) Genome Res. , vol.21 , pp. 1203-1212
    • Morrissy, A.S.1
  • 34
    • 84872135457 scopus 로고    scopus 로고
    • Control of somatic tissue differentiation by the long non-coding RNA TINCR
    • Kretz M., et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 2013, 493:231-235.
    • (2013) Nature , vol.493 , pp. 231-235
    • Kretz, M.1
  • 35
    • 84904985459 scopus 로고    scopus 로고
    • Regulation of microRNA biogenesis
    • Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15:509-524.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 509-524
    • Ha, M.1    Kim, V.N.2
  • 36
    • 84860418738 scopus 로고    scopus 로고
    • Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system
    • Tang R., et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012, 22:504-515.
    • (2012) Cell Res. , vol.22 , pp. 504-515
    • Tang, R.1
  • 37
    • 84863005508 scopus 로고    scopus 로고
    • Autoregulation of microRNA biogenesis by let-7 and Argonaute
    • Zisoulis D.G., et al. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 2012, 486:541-544.
    • (2012) Nature , vol.486 , pp. 541-544
    • Zisoulis, D.G.1
  • 38
    • 84903736048 scopus 로고    scopus 로고
    • Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region
    • Liz J., et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol. Cell 2014, 55:138-147.
    • (2014) Mol. Cell , vol.55 , pp. 138-147
    • Liz, J.1
  • 39
    • 84905483304 scopus 로고    scopus 로고
    • MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361
    • Wang K., et al. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361. PLoS Genet. 2014, 10:e1004467.
    • (2014) PLoS Genet. , vol.10 , pp. e1004467
    • Wang, K.1
  • 40
    • 80455143733 scopus 로고    scopus 로고
    • MiRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA
    • Hansen T.B., et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011, 30:4414-4422.
    • (2011) EMBO J. , vol.30 , pp. 4414-4422
    • Hansen, T.B.1
  • 41
    • 84900322651 scopus 로고    scopus 로고
    • Detecting and characterizing circular RNAs
    • Jeck W.R., Sharpless N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32:453-461.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 453-461
    • Jeck, W.R.1    Sharpless, N.E.2
  • 42
    • 84911491114 scopus 로고    scopus 로고
    • Circular RNAs: diversity of form and function
    • Lasda E., Parker R. Circular RNAs: diversity of form and function. RNA 2014, 20:1829-1842.
    • (2014) RNA , vol.20 , pp. 1829-1842
    • Lasda, E.1    Parker, R.2
  • 43
    • 84875369248 scopus 로고    scopus 로고
    • Circular RNAs are a large class of animal RNAs with regulatory potency
    • Memczak S., et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495:333-338.
    • (2013) Nature , vol.495 , pp. 333-338
    • Memczak, S.1
  • 44
    • 0027158771 scopus 로고
    • Circular transcripts of the testis-determining gene Sry in adult mouse testis
    • Capel B., et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993, 73:1019-1030.
    • (1993) Cell , vol.73 , pp. 1019-1030
    • Capel, B.1
  • 45
    • 84884566546 scopus 로고    scopus 로고
    • Circular intronic long noncoding RNAs
    • Zhang Y., et al. Circular intronic long noncoding RNAs. Mol. Cell 2013, 51:792-806.
    • (2013) Mol. Cell , vol.51 , pp. 792-806
    • Zhang, Y.1
  • 46
    • 84875372911 scopus 로고    scopus 로고
    • Natural RNA circles function as efficient microRNA sponges
    • Hansen T.B., et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495:384-388.
    • (2013) Nature , vol.495 , pp. 384-388
    • Hansen, T.B.1
  • 47
    • 78650696753 scopus 로고    scopus 로고
    • Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk
    • Burd C.E., et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010, 6:e1001233.
    • (2010) PLoS Genet. , vol.6 , pp. e1001233
    • Burd, C.E.1
  • 48
    • 84863045982 scopus 로고    scopus 로고
    • Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
    • Salzman J., et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7:e30733.
    • (2012) PLoS ONE , vol.7 , pp. e30733
    • Salzman, J.1
  • 49
    • 84872531655 scopus 로고    scopus 로고
    • Circular RNAs are abundant, conserved, and associated with ALU repeats
    • Jeck W.R., et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19:141-157.
    • (2013) RNA , vol.19 , pp. 141-157
    • Jeck, W.R.1
  • 50
    • 84956906428 scopus 로고    scopus 로고
    • Expanded identification and characterization of mammalian circular RNAs
    • Guo J.U., et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014, 15:409.
    • (2014) Genome Biol. , vol.15 , pp. 409
    • Guo, J.U.1
  • 51
    • 84907509527 scopus 로고    scopus 로고
    • Complementary sequence-mediated exon circularization
    • Zhang X.O., et al. Complementary sequence-mediated exon circularization. Cell 2014, 159:134-147.
    • (2014) Cell , vol.159 , pp. 134-147
    • Zhang, X.O.1
  • 52
    • 84911476411 scopus 로고    scopus 로고
    • CircRNA biogenesis competes with pre-mRNA splicing
    • Ashwal-Fluss R., et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 2014, 56:55-66.
    • (2014) Mol. Cell , vol.56 , pp. 55-66
    • Ashwal-Fluss, R.1
  • 53
    • 77957850291 scopus 로고    scopus 로고
    • Emerging roles for natural microRNA sponges
    • Ebert M.S., Sharp P.A. Emerging roles for natural microRNA sponges. Curr. Biol. 2010, 20:R858-R861.
    • (2010) Curr. Biol. , vol.20 , pp. R858-R861
    • Ebert, M.S.1    Sharp, P.A.2
  • 54
    • 79961170994 scopus 로고    scopus 로고
    • A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?
    • Salmena L., et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 2011, 146:353-358.
    • (2011) Cell , vol.146 , pp. 353-358
    • Salmena, L.1
  • 55
    • 67349123973 scopus 로고    scopus 로고
    • Redefining microRNA targets
    • Seitz H. Redefining microRNA targets. Curr. Biol. 2009, 19:870-873.
    • (2009) Curr. Biol. , vol.19 , pp. 870-873
    • Seitz, H.1
  • 56
    • 34548316982 scopus 로고    scopus 로고
    • MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells
    • Ebert M.S., et al. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 2007, 4:721-726.
    • (2007) Nat. Methods , vol.4 , pp. 721-726
    • Ebert, M.S.1
  • 57
    • 34547497309 scopus 로고    scopus 로고
    • Target mimicry provides a new mechanism for regulation of microRNA activity
    • Franco-Zorrilla J.M., et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 2007, 39:1033-1037.
    • (2007) Nat. Genet. , vol.39 , pp. 1033-1037
    • Franco-Zorrilla, J.M.1
  • 58
    • 77953957633 scopus 로고    scopus 로고
    • A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
    • Poliseno L., et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010, 465:1033-1038.
    • (2010) Nature , vol.465 , pp. 1033-1038
    • Poliseno, L.1
  • 59
    • 80054715378 scopus 로고    scopus 로고
    • A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
    • Cesana M., et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011, 147:358-369.
    • (2011) Cell , vol.147 , pp. 358-369
    • Cesana, M.1
  • 60
    • 80054681545 scopus 로고    scopus 로고
    • In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma
    • Karreth F.A., et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011, 147:382-395.
    • (2011) Cell , vol.147 , pp. 382-395
    • Karreth, F.A.1
  • 61
    • 80054700538 scopus 로고    scopus 로고
    • Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs
    • Tay Y., et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011, 147:344-357.
    • (2011) Cell , vol.147 , pp. 344-357
    • Tay, Y.1
  • 62
    • 80054689794 scopus 로고    scopus 로고
    • An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma
    • Sumazin P., et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 2011, 147:370-381.
    • (2011) Cell , vol.147 , pp. 370-381
    • Sumazin, P.1
  • 63
    • 78149303249 scopus 로고    scopus 로고
    • MicroRNA sponges: progress and possibilities
    • Ebert M.S., Sharp P.A. MicroRNA sponges: progress and possibilities. RNA 2010, 16:2043-2050.
    • (2010) RNA , vol.16 , pp. 2043-2050
    • Ebert, M.S.1    Sharp, P.A.2
  • 64
    • 77953798171 scopus 로고    scopus 로고
    • Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA
    • Cazalla D., et al. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 2010, 328:1563-1566.
    • (2010) Science , vol.328 , pp. 1563-1566
    • Cazalla, D.1
  • 65
    • 84876899530 scopus 로고    scopus 로고
    • Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments
    • Ala U., et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7154-7159.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7154-7159
    • Ala, U.1
  • 66
    • 84876177255 scopus 로고    scopus 로고
    • A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells
    • Johnsson P., et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 2013, 20:440-446.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 440-446
    • Johnsson, P.1
  • 67
    • 78149442860 scopus 로고    scopus 로고
    • Expression of versican 3'-untranslated region modulates endogenous microRNA functions
    • Lee D.Y., et al. Expression of versican 3'-untranslated region modulates endogenous microRNA functions. PLoS ONE 2010, 5:e13599.
    • (2010) PLoS ONE , vol.5 , pp. e13599
    • Lee, D.Y.1
  • 68
    • 84874583945 scopus 로고    scopus 로고
    • Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity
    • Fang L., et al. Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J. 2013, 27:907-919.
    • (2013) FASEB J. , vol.27 , pp. 907-919
    • Fang, L.1
  • 69
    • 79955598536 scopus 로고    scopus 로고
    • Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis
    • Jeyapalan Z., et al. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011, 39:3026-3041.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 3026-3041
    • Jeyapalan, Z.1
  • 70
    • 84893747773 scopus 로고    scopus 로고
    • A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis
    • Legnini I., et al. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol. Cell 2014, 53:506-514.
    • (2014) Mol. Cell , vol.53 , pp. 506-514
    • Legnini, I.1
  • 71
    • 84899912204 scopus 로고    scopus 로고
    • The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489
    • Wang K., et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 2014, 114:1377-1388.
    • (2014) Circ. Res. , vol.114 , pp. 1377-1388
    • Wang, K.1
  • 72
    • 77956542998 scopus 로고    scopus 로고
    • CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer
    • Wang J., et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010, 38:5366-5383.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 5366-5383
    • Wang, J.1
  • 73
    • 84908870790 scopus 로고    scopus 로고
    • Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7
    • Tan J.Y., et al. Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat. Struct. Mol. Biol. 2014, 21:955-961.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 955-961
    • Tan, J.Y.1
  • 74
    • 84885374473 scopus 로고    scopus 로고
    • The imprinted H19 lncRNA antagonizes let-7 microRNAs
    • Kallen A.N., et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 2013, 52:101-112.
    • (2013) Mol. Cell , vol.52 , pp. 101-112
    • Kallen, A.N.1
  • 75
    • 84920974266 scopus 로고    scopus 로고
    • The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
    • Gao Y., et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014, 42:13799-13811.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 13799-13811
    • Gao, Y.1
  • 76
    • 84892374204 scopus 로고    scopus 로고
    • HMGA2 functions as a competing endogenous RNA to promote lung cancer progression
    • Kumar M.S., et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 2014, 505:212-217.
    • (2014) Nature , vol.505 , pp. 212-217
    • Kumar, M.S.1
  • 77
    • 79953673245 scopus 로고    scopus 로고
    • Expression of distinct RNAs from 3' untranslated regions
    • Mercer T.R., et al. Expression of distinct RNAs from 3' untranslated regions. Nucleic Acids Res. 2011, 39:2393-2403.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 2393-2403
    • Mercer, T.R.1
  • 78
    • 84901838697 scopus 로고    scopus 로고
    • Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance
    • Denzler R., et al. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 2014, 54:766-776.
    • (2014) Mol. Cell , vol.54 , pp. 766-776
    • Denzler, R.1
  • 79
    • 84874833554 scopus 로고    scopus 로고
    • MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory
    • Figliuzzi M., et al. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys. J. 2013, 104:1203-1213.
    • (2013) Biophys. J. , vol.104 , pp. 1203-1213
    • Figliuzzi, M.1
  • 80
    • 84879486402 scopus 로고    scopus 로고
    • Modelling Competing Endogenous RNA Networks
    • Bosia C., et al. Modelling Competing Endogenous RNA Networks. PLoS ONE 2013, 8:e66609.
    • (2013) PLoS ONE , vol.8 , pp. e66609
    • Bosia, C.1
  • 81
    • 84907344020 scopus 로고    scopus 로고
    • RNA-based regulation: dynamics and response to perturbations of competing RNAs
    • Figliuzzi M., et al. RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys. J. 2014, 107:1011-1022.
    • (2014) Biophys. J. , vol.107 , pp. 1011-1022
    • Figliuzzi, M.1
  • 82
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • Ambros V. The functions of animal microRNAs. Nature 2004, 431:350-355.
    • (2004) Nature , vol.431 , pp. 350-355
    • Ambros, V.1
  • 83
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 84
    • 84925283926 scopus 로고    scopus 로고
    • Using synthetic RNAs as scaffolds and regulators
    • Myhrvold C., Silver P.A. Using synthetic RNAs as scaffolds and regulators. Nat. Struct. Mol. Biol. 2015, 22:8-10.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 8-10
    • Myhrvold, C.1    Silver, P.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.