메뉴 건너뛰기




Volumn 24, Issue 7, 2015, Pages 2037-2050

Spatial coherence-based batch-mode active learning for remote sensing image classification

Author keywords

active learning; hyperspectral images; image classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; IMAGE RECONSTRUCTION; ITERATIVE METHODS; REMOTE SENSING; SAMPLING; SPECTROSCOPY; TARGET TRACKING;

EID: 84927670473     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2015.2405335     Document Type: Article
Times cited : (63)

References (55)
  • 1
    • 0029375892 scopus 로고
    • Image classification using spectral and spatial information based on MRF models
    • Sep.
    • T. Yamazaki and D. Gingras, "Image classification using spectral and spatial information based on MRF models," IEEE Trans. Image Process., vol. 4, no. 9, pp. 1333-1339, Sep. 1995.
    • (1995) IEEE Trans. Image Process. , vol.4 , Issue.9 , pp. 1333-1339
    • Yamazaki, T.1    Gingras, D.2
  • 2
    • 84859048363 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
    • Apr.
    • K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and J. A. Benediktsson, "Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2008-2021, Apr. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1    Tarabalka, Y.2    Angulo, J.3    Chanussot, J.4    Benediktsson, J.A.5
  • 3
    • 84255178228 scopus 로고    scopus 로고
    • Anomaly detection and reconstruction from random projections
    • Jan.
    • J. E. Fowler and Q. Du, "Anomaly detection and reconstruction from random projections," IEEE Trans. Image Process., vol. 21, no. 1, pp. 184-195, Jan. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.1 , pp. 184-195
    • Fowler, J.E.1    Du, Q.2
  • 6
    • 84859075572 scopus 로고    scopus 로고
    • Semantic-gap-oriented active learning for multilabel image annotation
    • Apr.
    • J. Tang, Z.-J. Zha, D. Tao, and T.-S. Chua, "Semantic-gap-oriented active learning for multilabel image annotation," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2354-2360, Apr. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2354-2360
    • Tang, J.1    Zha, Z.-J.2    Tao, D.3    Chua, T.-S.4
  • 7
    • 79959582478 scopus 로고    scopus 로고
    • Active learning for solving the incomplete data problem in facial age classification by the furthest nearest-neighbor criterion
    • Jul.
    • J.-G. Wang, E. Sung, and W.-Y. Yau, "Active learning for solving the incomplete data problem in facial age classification by the furthest nearest-neighbor criterion," IEEE Trans. Image Process., vol. 20, no. 7, pp. 2049-2062, Jul. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 2049-2062
    • Wang, J.-G.1    Sung, E.2    Yau, W.-Y.3
  • 8
    • 67349288064 scopus 로고    scopus 로고
    • Bayesian data fusion of multiview synthetic aperture sonar imagery for seabed classification
    • Jun.
    • D. P. Williams, "Bayesian data fusion of multiview synthetic aperture sonar imagery for seabed classification," IEEE Trans. Image Process., vol. 18, no. 6, pp. 1239-1254, Jun. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.6 , pp. 1239-1254
    • Williams, D.P.1
  • 9
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • Jul.
    • D. MacKay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, Jul. 1992.
    • (1992) Neural Comput. , vol.4 , Issue.4 , pp. 590-604
    • Mackay, D.1
  • 10
    • 85124125604 scopus 로고
    • Heterogeneous uncertainty sampling for supervised learning
    • D. D. Lewis and J. Catlett, "Heterogeneous uncertainty sampling for supervised learning," in Proc. 11th Int. Conf. Mach. Learn., 1994, pp. 148-156.
    • (1994) Proc. 11th Int. Conf. Mach. Learn. , pp. 148-156
    • Lewis, D.D.1    Catlett, J.2
  • 12
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • Jul.
    • A. Vlachos, "A stopping criterion for active learning," Comput. Speech Lang., vol. 22, no. 3, pp. 295-312, Jul. 2008.
    • (2008) Comput. Speech Lang. , vol.22 , Issue.3 , pp. 295-312
    • Vlachos, A.1
  • 13
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Mar.
    • B. Demir, C. Persello, and L. Bruzzone, "Batch-mode active-learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 14
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • K. Brinker, "Incorporating diversity in active learning with support vector machines," in Proc. Int. Conf. Mach. Learn. Workshop, 2003, p. 59.
    • (2003) Proc. Int. Conf. Mach. Learn. Workshop , pp. 59
    • Brinker, K.1
  • 15
    • 35248825961 scopus 로고    scopus 로고
    • Representative sampling for text classification using support vector machines
    • Apr.
    • Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, "Representative sampling for text classification using support vector machines," Adv. Inf. Retr., vol. 2633, pp. 393-407, Apr. 2003.
    • (2003) Adv. Inf. Retr. , vol.2633 , pp. 393-407
    • Xu, Z.1    Yu, K.2    Tresp, V.3    Xu, X.4    Wang, J.5
  • 18
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Aug./Sep.
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Mach. Learn., vol. 28, nos. 2-3, pp. 133-168, Aug./Sep. 1997.
    • (1997) Mach. Learn. , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 22
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • May
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, nos. 2-3, pp. 103-134, May 2000.
    • (2000) Mach. Learn. , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 23
    • 10044219654 scopus 로고    scopus 로고
    • Active learning to recognize multiple types of plankton
    • Aug.
    • T. Luo et al., "Active learning to recognize multiple types of plankton," in Proc. 17th Int. Conf. Pattern Recognit. (ICPR), Aug. 2004, pp. 478-481.
    • (2004) Proc. 17th Int. Conf. Pattern Recognit. (ICPR) , pp. 478-481
    • Luo, T.1
  • 24
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through Monte Carlo estimation of error reduction
    • Williamstown, MA, USA
    • N. Roy and A. McCallum, "Toward optimal active learning through Monte Carlo estimation of error reduction," in Proc. ICML, Williamstown, MA, USA, 2001, pp. 441-448.
    • (2001) Proc. ICML , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 26
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. Int. Conf. Mach. Learn. Workshop, 2000, pp. 839-846.
    • (2000) Proc. Int. Conf. Mach. Learn. Workshop , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 27
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Mar.
    • B. Demir, C. Persello, and L. Bruzzone, "Batch-mode active-learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 28
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • Apr.
    • M. Ferecatu and N. Boujemaa, "Interactive remote-sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 29
    • 84864278874 scopus 로고    scopus 로고
    • Memory-based cluster sampling for remote sensing image classification
    • Aug.
    • M. Volpi, D. Tuia, and M. Kanevski, "Memory-based cluster sampling for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3096-3106, Aug. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.8 , pp. 3096-3106
    • Volpi, M.1    Tuia, D.2    Kanevski, M.3
  • 30
    • 79955632976 scopus 로고    scopus 로고
    • A fast cluster-assumption based activelearning technique for classification of remote sensing images
    • May
    • S. Patra and L. Bruzzone, "A fast cluster-assumption based activelearning technique for classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1617-1626, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1617-1626
    • Patra, S.1    Bruzzone, L.2
  • 31
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Sep.
    • Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clustering-guided sparse structural learning for unsupervised feature selection," IEEE Trans. Knowl. Data Eng., vol. 26, no. 9, pp. 2138-2150, Sep. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.9 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 32
    • 77951146144 scopus 로고    scopus 로고
    • Spatially adaptive classification and active learning of multispectral data with Gaussian processes
    • G. Jun, R. R. Vatsavai, and J. Ghosh, "Spatially adaptive classification and active learning of multispectral data with Gaussian processes," in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), 2009, pp. 597-603.
    • (2009) Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW) , pp. 597-603
    • Jun, G.1    Vatsavai, R.R.2    Ghosh, J.3
  • 33
    • 77950938874 scopus 로고    scopus 로고
    • Active learning of hyperspectral data with spatially dependent label acquisition costs
    • Jul.
    • A. Liu, G. Jun, and J. Ghosh, "Active learning of hyperspectral data with spatially dependent label acquisition costs," in Proc. IEEE Int. Geosci. Remote Sens. Symp., vol. 5. Jul. 2009, pp. V-256-V-259.
    • (2009) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.5 , pp. V256-V259
    • Liu, A.1    Jun, G.2    Ghosh, J.3
  • 34
    • 84873177815 scopus 로고    scopus 로고
    • A cost-sensitive active learning technique for the definition of effective training sets for supervised classifiers
    • Munich, Germany, Jul.
    • B. Demir, L. Minello, and L. Bruzzone, "A cost-sensitive active learning technique for the definition of effective training sets for supervised classifiers," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Munich, Germany, Jul. 2012, pp. 1781-1784.
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 1781-1784
    • Demir, B.1    Minello, L.2    Bruzzone, L.3
  • 35
    • 84857046663 scopus 로고    scopus 로고
    • Remote sensing image segmentation by active queries
    • Jun.
    • D. Tuia, J. Muñoz-Marí, and G. Camps-Valls, "Remote sensing image segmentation by active queries," Pattern Recognit., vol. 45, no. 6, pp. 2180-2192, Jun. 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.6 , pp. 2180-2192
    • Tuia, D.1    Muñoz-Marí, J.2    Camps-Valls, G.3
  • 36
    • 1642528357 scopus 로고    scopus 로고
    • Object-based classification of remote sensing data for change detection
    • Jan.
    • V. Walter, "Object-based classification of remote sensing data for change detection," ISPRS J. Photogramm. Remote Sens., vol. 58, nos. 3-4, pp. 225-238, Jan. 2004.
    • (2004) ISPRS J. Photogramm. Remote Sens. , vol.58 , Issue.3-4 , pp. 225-238
    • Walter, V.1
  • 37
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar.
    • M. M. Crawford, D. Tuia, and H. L. Yang, "Active learning: Any value for classification of remotely sensed data?" Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.M.1    Tuia, D.2    Yang, H.L.3
  • 38
    • 84867060971 scopus 로고    scopus 로고
    • Semisupervised classification of remote sensing images with active queries
    • Oct.
    • J. Muñoz-Marí, D. Tuia, and G. Camps-Valls, "Semisupervised classification of remote sensing images with active queries," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3751-3763, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 3751-3763
    • Muñoz-Marí, J.1    Tuia, D.2    Camps-Valls, G.3
  • 39
    • 33748126301 scopus 로고    scopus 로고
    • Confidence-based active learning
    • Aug.
    • M. Li and I. K. Sethi, "Confidence-based active learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1251-1261, Aug. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.8 , pp. 1251-1261
    • Li, M.1    Sethi, I.K.2
  • 41
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • Jul.
    • A. Vlachos, "A stopping criterion for active learning," Comput. Speech Lang., vol. 22, no. 3, pp. 295-312, Jul. 2008.
    • (2008) Comput. Speech Lang. , vol.22 , Issue.3 , pp. 295-312
    • Vlachos, A.1
  • 42
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Aug.
    • Y. Cheng, "Mean shift, mode seeking, and clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 18, pp. 790-799, Aug. 1995.
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell. , vol.17 , Issue.18 , pp. 790-799
    • Cheng, Y.1
  • 43
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 44
    • 0034857778 scopus 로고    scopus 로고
    • The variable bandwidth mean shift and data-driven scale selection
    • Jul.
    • D. Comaniciu, V. Ramesh, and P. Meer, "The variable bandwidth mean shift and data-driven scale selection," in Proc. 8th IEEE Int. Conf. Comput. Vis., Jul. 2001, pp. 438-445.
    • (2001) Proc. 8th IEEE Int. Conf. Comput. Vis. , pp. 438-445
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 45
    • 70350153353 scopus 로고    scopus 로고
    • An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery
    • Dec.
    • X. Huang and L. Zhang, "An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4173-4185, Dec. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.12 , pp. 4173-4185
    • Huang, X.1    Zhang, L.2
  • 47
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Apr.
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1-27:27, Apr. 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 48
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Jan.
    • V. Cherkassky and Y. Ma, "Practical selection of SVM parameters and noise estimation for SVM regression," Neural Netw., vol. 17, no. 1, pp. 113-126, Jan. 2004.
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 49
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 50
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 51
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 52
    • 79952402835 scopus 로고    scopus 로고
    • Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images
    • Feb.
    • J. Tang, R. Hong, S. Yan, T.-S. Chua, G.-J. Qi, and R. Jain, "Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images," ACM Trans. Int. Syst. Technol., vol. 2, no. 2, p. 14, Feb. 2011.
    • (2011) ACM Trans. Int. Syst. Technol. , vol.2 , Issue.2 , pp. 14
    • Tang, J.1    Hong, R.2    Yan, S.3    Chua, T.-S.4    Qi, G.-J.5    Jain, R.6
  • 53
    • 84883748507 scopus 로고    scopus 로고
    • Semisupervised discriminative locally enhanced alignment for hyperspectral image classification
    • Sep.
    • Q. Shi, L. Zhang, and B. Du, "Semisupervised discriminative locally enhanced alignment for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4800-4815, Sep. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.9 , pp. 4800-4815
    • Shi, Q.1    Zhang, L.2    Du, B.3
  • 54
    • 84863976875 scopus 로고    scopus 로고
    • A discriminative manifold learning based dimension reduction method for hyperspectral classification
    • Jun.
    • B. Du, L. Zhang, L. Zhang, T. Chen, and K. Wu, "A discriminative manifold learning based dimension reduction method for hyperspectral classification," Int. J. Fuzzy Syst., vol. 14, no. 2, pp. 272-277, Jun. 2012.
    • (2012) Int. J. Fuzzy Syst. , vol.14 , Issue.2 , pp. 272-277
    • Du, B.1    Zhang, L.2    Zhang, L.3    Chen, T.4    Wu, K.5
  • 55
    • 84906782665 scopus 로고    scopus 로고
    • An abundance characteristicbased independent component analysis for hyperspectral unmixing
    • Jan.
    • N. Wang, B. Du, L. Zhang, and L. Zhang, "An abundance characteristicbased independent component analysis for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 416-428, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 416-428
    • Wang, N.1    Du, B.2    Zhang, L.3    Zhang, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.