메뉴 건너뛰기




Volumn 16, Issue 3, 2014, Pages 475-496

From miRNA regulation to miRNA-TF co-regulation: Computational approaches and challenges

Author keywords

Causality discovery; Co regulation; Data integration; miRNA; miRNA target; Transcription factor

Indexed keywords

MICRORNA; REGULATORY RNA SEQUENCE; TRANSCRIPTION FACTOR;

EID: 84927053571     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbu023     Document Type: Article
Times cited : (40)

References (106)
  • 1
    • 62549128139 scopus 로고    scopus 로고
    • A census of human transcription factors: function, expression and evolution
    • Vaquerizas MJ, Kummerfeld KS, Teichmann AS, et al. A census of human transcription factors: function, expression and evolution. Nat Rev Genet 2009;10.
    • (2009) Nat Rev Genet , pp. 10
    • Vaquerizas, M.J.1    Kummerfeld, K.S.2    Teichmann, A.S.3
  • 2
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 3
    • 31744432337 scopus 로고    scopus 로고
    • The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
    • Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38:228-33.
    • (2006) Nat Genet , vol.38 , pp. 228-233
    • Chen, J.F.1    Mandel, E.M.2    Thomson, J.M.3
  • 4
    • 22444437609 scopus 로고    scopus 로고
    • Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis
    • Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005;436:214-20.
    • (2005) Nature , vol.436 , pp. 214-220
    • Zhao, Y.1    Samal, E.2    Srivastava, D.3
  • 5
    • 9144270691 scopus 로고    scopus 로고
    • A pancreatic isletspecific microRNA regulates insulin secretion
    • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic isletspecific microRNA regulates insulin secretion. Nature 2004;432:226-30.
    • (2004) Nature , vol.432 , pp. 226-230
    • Poy, M.N.1    Eliasson, L.2    Krutzfeldt, J.3
  • 6
    • 33645294070 scopus 로고    scopus 로고
    • Oncomirs - microRNAs with a role in cancer
    • Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-69.
    • (2006) Nat Rev Cancer , vol.6 , pp. 259-269
    • Esquela-Kerscher, A.1    Slack, F.J.2
  • 7
    • 1642540373 scopus 로고    scopus 로고
    • Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway
    • Jin P, Zarnescu DC, Ceman S, et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 2004;7:113-17.
    • (2004) Nat Neurosci , vol.7 , pp. 113-117
    • Jin, P.1    Zarnescu, D.C.2    Ceman, S.3
  • 8
    • 34948829119 scopus 로고    scopus 로고
    • The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes
    • Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. JCell Sci 2007;120:3045-52.
    • (2007) JCell Sci , vol.120 , pp. 3045-3052
    • Xu, C.1    Lu, Y.2    Pan, Z.3
  • 9
    • 33846045953 scopus 로고    scopus 로고
    • Principles of microRNA regulation of a human cellular signaling network
    • Cui Q, Yu Z, Purisima EO, et al. Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2006;2:1-7.
    • (2006) Mol Syst Biol , vol.2 , pp. 1-7
    • Cui, Q.1    Yu, Z.2    Purisima, E.O.3
  • 10
    • 78650238139 scopus 로고    scopus 로고
    • Schizophrenia is associated with an increase in cortical microRNA biogenesis
    • Beveridge N, Gardiner E, Carroll A, et al. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2009;15:1176-89.
    • (2009) Mol Psychiatry , vol.15 , pp. 1176-1189
    • Beveridge, N.1    Gardiner, E.2    Carroll, A.3
  • 11
    • 23844555119 scopus 로고    scopus 로고
    • MicroRNA gene expression deregulation in human breast cancer
    • Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-70.
    • (2005) Cancer Res , vol.65 , pp. 7065-7070
    • Iorio, M.V.1    Ferracin, M.2    Liu, C.G.3
  • 12
    • 34447132924 scopus 로고    scopus 로고
    • MicroRNA expression profiling in prostate cancer
    • Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in prostate cancer. Cancer Res 2007;67:6130-5.
    • (2007) Cancer Res , vol.67 , pp. 6130-6135
    • Porkka, K.P.1    Pfeiffer, M.J.2    Waltering, K.K.3
  • 13
    • 33644819964 scopus 로고    scopus 로고
    • Unique microRNA molecular profiles in lung cancer diagnosis and prognosis
    • Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189-98.
    • (2006) Cancer Cell , vol.9 , pp. 189-198
    • Yanaihara, N.1    Caplen, N.2    Bowman, E.3
  • 14
    • 34249047317 scopus 로고    scopus 로고
    • MicroRNA-143 and-145 in colon cancer
    • Akao Y, Nakagawa Y, Naoe T. MicroRNA-143 and-145 in colon cancer. DNACell Biol 2007;26:311-20.
    • (2007) DNACell Biol , vol.26 , pp. 311-320
    • Akao, Y.1    Nakagawa, Y.2    Naoe, T.3
  • 15
    • 39049086391 scopus 로고    scopus 로고
    • MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN
    • Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008;68:425-33.
    • (2008) Cancer Res , vol.68 , pp. 425-433
    • Yang, H.1    Kong, W.2    He, L.3
  • 16
    • 65649131880 scopus 로고    scopus 로고
    • Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland
    • Zhang X, Cairns M, Rose B, et al. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. IntJCancer 2009;124:2855-63.
    • (2009) IntJCancer , vol.124 , pp. 2855-2863
    • Zhang, X.1    Cairns, M.2    Rose, B.3
  • 17
    • 61349110680 scopus 로고    scopus 로고
    • MicroRNA regulation of Alzheimer's Amyloid precursor protein expression
    • Hébert SS, Horré K, Nicolaï L, et al. MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis 2009;33:422-8.
    • (2009) Neurobiol Dis , vol.33 , pp. 422-428
    • Hébert, S.S.1    Horré, K.2    Nicolaï, L.3
  • 18
    • 77957888270 scopus 로고    scopus 로고
    • MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood
    • Cox MB, Cairns MJ, Gandhi KS, et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 2010;5:e12132.
    • (2010) PLoS One , vol.5 , pp. e12132
    • Cox, M.B.1    Cairns, M.J.2    Gandhi, K.S.3
  • 19
    • 70349320158 scopus 로고    scopus 로고
    • Causes and consequences of microRNA dysregulation in cancer
    • Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-14.
    • (2009) Nat Rev Genet , vol.10 , pp. 704-714
    • Croce, C.M.1
  • 20
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 21
    • 41349096445 scopus 로고    scopus 로고
    • Gene regulation by transcription factors and microRNAs
    • Hobert O. Gene regulation by transcription factors and microRNAs. Science 2008;319:1785-6.
    • (2008) Science , vol.319 , pp. 1785-1786
    • Hobert, O.1
  • 23
    • 84878517261 scopus 로고    scopus 로고
    • Joint analysis of miRNA and mRNA expression data
    • Muniategui A, Pey J, Planes FJ, et al. Joint analysis of miRNA and mRNA expression data. Brief Bioinform 2012;14:263-78.
    • (2012) Brief Bioinform , vol.14 , pp. 263-278
    • Muniategui, A.1    Pey, J.2    Planes, F.J.3
  • 24
    • 84893025641 scopus 로고    scopus 로고
    • Identifying miRNAs, targets and functions
    • Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform 2014;15:1-9.
    • (2014) Brief Bioinform , vol.15 , pp. 1-9
    • Liu, B.1    Li, J.2    Cairns, M.J.3
  • 26
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005;37:495-500.
    • (2005) Nat Genet , vol.37 , pp. 495-500
    • Krek, A.1    Grun, D.2    Poy, M.N.3
  • 27
    • 84882590068 scopus 로고    scopus 로고
    • Joint analysis of expression profiles from multiple cancers improves the identification of microRNA-gene interactions
    • Chen X, Slack FJ, Zhao H. Joint analysis of expression profiles from multiple cancers improves the identification of microRNA-gene interactions. Bioinformatics 2013;29:2137-45.
    • (2013) Bioinformatics , vol.29 , pp. 2137-2145
    • Chen, X.1    Slack, F.J.2    Zhao, H.3
  • 28
    • 84887499256 scopus 로고    scopus 로고
    • Analysis of microRNA-target interactions across diverse cancer types
    • Jacobsen A, Silber J, Harinath G, et al. Analysis of microRNA-target interactions across diverse cancer types. Nat StructMol Biol 2013;20:1325-32.
    • (2013) Nat StructMol Biol , vol.20 , pp. 1325-1332
    • Jacobsen, A.1    Silber, J.2    Harinath, G.3
  • 29
    • 84897692557 scopus 로고    scopus 로고
    • A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information
    • Li Y, Goldenberg A, Wong KC, et al. A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information. Bioinformatics 2014;30:621-8.
    • (2014) Bioinformatics , vol.30 , pp. 621-628
    • Li, Y.1    Goldenberg, A.2    Wong, K.C.3
  • 30
    • 84876784630 scopus 로고    scopus 로고
    • Exploring complex miRNAmRNA regulatory networks by splitting-averaging strategy
    • Liu B, Li J, Tsykin A, et al. Exploring complex miRNAmRNA regulatory networks by splitting-averaging strategy. BMC Bioinformatics 2009;19:1-19.
    • (2009) BMC Bioinformatics , vol.19 , pp. 1-19
    • Liu, B.1    Li, J.2    Tsykin, A.3
  • 31
    • 84875145131 scopus 로고    scopus 로고
    • Inferring microRNA-mRNA causal regulatory relationships from expression data
    • Le TD, Liu L, Tsykin A, et al. Inferring microRNA-mRNA causal regulatory relationships from expression data. Bioinformatics 2013;29:765-71.
    • (2013) Bioinformatics , vol.29 , pp. 765-771
    • Le, T.D.1    Liu, L.2    Tsykin, A.3
  • 32
    • 79960028760 scopus 로고    scopus 로고
    • mirAct: a web tool for evaluating microRNA activity based on gene expression data
    • Liang Z, Zhou H, He Z, et al. mirAct: a web tool for evaluating microRNA activity based on gene expression data. Nucleic Acids Res 2011;39:W139-44.
    • (2011) Nucleic Acids Res , vol.39 , pp. W139-W144
    • Liang, Z.1    Zhou, H.2    He, Z.3
  • 33
    • 84875994305 scopus 로고    scopus 로고
    • Dissection of regulatory networks that are altered in disease via differential co-expression
    • Amar D, Safer H, Shamir R. Dissection of regulatory networks that are altered in disease via differential co-expression. PLoSComput Biol 2013;9:e1002955.
    • (2013) PLoSComput Biol , vol.9 , pp. e1002955
    • Amar, D.1    Safer, H.2    Shamir, R.3
  • 35
    • 84891796290 scopus 로고    scopus 로고
    • miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions
    • Hsu S-D, Tseng Y-T, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2014;42:D78-85.
    • (2014) Nucleic Acids Res , vol.42 , pp. D78-D85
    • Hsu, S.-D.1    Tseng, Y.-T.2    Shrestha, S.3
  • 36
    • 49949116902 scopus 로고    scopus 로고
    • The impact of microRNAs on protein output
    • Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature 2008;455:64-71.
    • (2008) Nature , vol.455 , pp. 64-71
    • Baek, D.1    Villén, J.2    Shin, C.3
  • 39
    • 34249761849 scopus 로고
    • Learning Bayesian networks:the combination of knowledge and statistical data metrics for belief networks
    • Heckerman D, Chickering DM. Learning Bayesian networks:the combination of knowledge and statistical data metrics for belief networks. Mach Learn 1995;20:197-243.
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Chickering, D.M.2
  • 40
    • 75549092303 scopus 로고    scopus 로고
    • TransmiR: a transcription factor-microRNA regulation database
    • Wang J, Lu M, Qiu C, et al. TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 2010;38:D119-22.
    • (2010) Nucleic Acids Res , vol.38 , pp. D119-D122
    • Wang, J.1    Lu, M.2    Qiu, C.3
  • 41
    • 77951641247 scopus 로고    scopus 로고
    • Predicting causal effects in large-scale systems from observational data
    • Maathuis HM, Colombo D, Kalisch M, et al. Predicting causal effects in large-scale systems from observational data. NatMethods 2010;7:247-9.
    • (2010) NatMethods , vol.7 , pp. 247-249
    • Maathuis, H.M.1    Colombo, D.2    Kalisch, M.3
  • 42
    • 69949166983 scopus 로고    scopus 로고
    • Estimating highdimensional intervention effects from observational data
    • Maathuis HM, Kalisch M, Buhlmann P. Estimating highdimensional intervention effects from observational data. Ann Stat 2009;37:3133-64.
    • (2009) Ann Stat , vol.37 , pp. 3133-3164
    • Maathuis, H.M.1    Kalisch, M.2    Buhlmann, P.3
  • 44
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch M, Buhlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res 2007;8:613-36.
    • (2007) J Mach Learn Res , vol.8 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 45
    • 84863005508 scopus 로고    scopus 로고
    • Autoregulation of microRNA biogenesis by let-7 and Argonaute
    • Zisoulis DG, Kai ZS, Chang RK, et al. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 2012;486:541-4.
    • (2012) Nature , vol.486 , pp. 541-544
    • Zisoulis, D.G.1    Kai, Z.S.2    Chang, R.K.3
  • 46
    • 77953913791 scopus 로고    scopus 로고
    • From 'differential expression'to ''differential networking''-identification of dysfunctional regulatory networks in diseases
    • de la Fuente A. From 'differential expression'to ''differential networking''-identification of dysfunctional regulatory networks in diseases. Trends Genet 2010;26:326-33.
    • (2010) Trends Genet , vol.26 , pp. 326-333
    • de la Fuente, A.1
  • 47
    • 33644499134 scopus 로고    scopus 로고
    • Cell-type-specific signatures of microRNAs on target mRNA expression
    • Sood P, Krek A, Zavolan M, et al. Cell-type-specific signatures of microRNAs on target mRNA expression. ProcNatl Acad SciUSA 2006;103:2746-51.
    • (2006) ProcNatl Acad SciUSA , vol.103 , pp. 2746-2751
    • Sood, P.1    Krek, A.2    Zavolan, M.3
  • 48
    • 77949430343 scopus 로고    scopus 로고
    • The DIANA-mirExTra web server: from gene expression data to microRNA function
    • Alexiou P, Maragkakis M, Papadopoulos GL, et al. The DIANA-mirExTra web server: from gene expression data to microRNA function. PLoS One 2010;5:e9171.
    • (2010) PLoS One , vol.5 , pp. e9171
    • Alexiou, P.1    Maragkakis, M.2    Papadopoulos, G.L.3
  • 49
    • 57049175013 scopus 로고    scopus 로고
    • Detecting microRNA binding and siRNA off-target effects from expression data
    • van Dongen S, Abreu-Goodger C, Enright AJ. Detecting microRNA binding and siRNA off-target effects from expression data. NatMethods 2008;5:1023-5.
    • (2008) NatMethods , vol.5 , pp. 1023-1025
    • van Dongen, S.1    Abreu-Goodger, C.2    Enright, A.J.3
  • 50
    • 44349128983 scopus 로고    scopus 로고
    • Inferring microRNA activities by combining gene expression with microRNA target prediction
    • Cheng C, Li LM. Inferring microRNA activities by combining gene expression with microRNA target prediction. PLoS One 2008;3:e1989.
    • (2008) PLoS One , vol.3 , pp. e1989
    • Cheng, C.1    Li, L.M.2
  • 51
    • 84886110371 scopus 로고    scopus 로고
    • VAN: an R package for identifying biologically perturbed networks via differential variability analysis
    • Jayaswal V, Schramm SJ, Mann GJ, et al. VAN: an R package for identifying biologically perturbed networks via differential variability analysis. BMC Res Notes 2013;6:430.
    • (2013) BMC Res Notes , vol.6 , pp. 430
    • Jayaswal, V.1    Schramm, S.J.2    Mann, G.J.3
  • 52
    • 0033518234 scopus 로고    scopus 로고
    • From molecular to modular cell biology
    • Hartwell LH, Hopfield JJ, Leibler S, et al. From molecular to modular cell biology. Nature 1999;402:C47-52.
    • (1999) Nature , vol.402 , pp. C47-C52
    • Hartwell, L.H.1    Hopfield, J.J.2    Leibler, S.3
  • 53
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • Ihmels J, Friedlander G, Bergmann S, et al. Revealing modular organization in the yeast transcriptional network. Nat Genet 2002;31:370-7.
    • (2002) Nat Genet , vol.31 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergmann, S.3
  • 54
    • 33846002373 scopus 로고    scopus 로고
    • Modularity and dynamics of cellular networks
    • Qi Y, Ge H. Modularity and dynamics of cellular networks. PLoSComput Biol 2006;2:e174.
    • (2006) PLoSComput Biol , vol.2 , pp. e174
    • Qi, Y.1    Ge, H.2
  • 55
    • 79959448071 scopus 로고    scopus 로고
    • A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
    • Zhang S, Li Q, Liu J, et al. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 2011;27:i401-9.
    • (2011) Bioinformatics , vol.27 , pp. i401-i409
    • Zhang, S.1    Li, Q.2    Liu, J.3
  • 56
    • 84879893951 scopus 로고    scopus 로고
    • Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation
    • Le H-S, Bar-Joseph Z. Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation. Bioinformatics 2013;29:i89-97.
    • (2013) Bioinformatics , vol.29 , pp. i89-i97
    • Le, H.-S.1    Bar-Joseph, Z.2
  • 57
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang S, Liu C-C, Li W, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012;40:9379-91.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9379-9391
    • Zhang, S.1    Liu, C.-C.2    Li, W.3
  • 58
    • 84867283138 scopus 로고    scopus 로고
    • Identifying multi-layer gene regulatory modules from multi-dimensional genomic data
    • Li W, Zhang S, Liu CC, et al. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics 2012;28:2458-66.
    • (2012) Bioinformatics , vol.28 , pp. 2458-2466
    • Li, W.1    Zhang, S.2    Liu, C.C.3
  • 59
    • 34547555796 scopus 로고    scopus 로고
    • Global and local architecture of the mammalian microRNA-transcription factor regulatory network
    • Shalgi R, Lieber D, Oren M, et al. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoSComput Biol 2007;3:e131.
    • (2007) PLoSComput Biol , vol.3 , pp. e131
    • Shalgi, R.1    Lieber, D.2    Oren, M.3
  • 60
    • 38349138548 scopus 로고    scopus 로고
    • Inter- and intracombinatorial regulation by transcription factors and microRNAs
    • Zhou Y, Ferguson J, Chang JT, et al. Inter- and intracombinatorial regulation by transcription factors and microRNAs. BMCGenomics 2007;8:396.
    • (2007) BMCGenomics , vol.8 , pp. 396
    • Zhou, Y.1    Ferguson, J.2    Chang, J.T.3
  • 61
    • 79951521140 scopus 로고    scopus 로고
    • Coregulation of transcription factors and microRNAs in human transcriptional regulatory network
    • Chen CY, Chen ST, Fuh CS, et al. Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC Bioinformatics 2011;12:S41.
    • (2011) BMC Bioinformatics , vol.12 , pp. S41
    • Chen, C.Y.1    Chen, S.T.2    Fuh, C.S.3
  • 62
    • 83455173565 scopus 로고    scopus 로고
    • Computational discovery of miR-TF regulatory modules in human genome
    • Tran DH, Satou K, Ho TB, et al. Computational discovery of miR-TF regulatory modules in human genome. Bioinformation 2010;2063:371-7.
    • (2010) Bioinformation , vol.2063 , pp. 371-377
    • Tran, D.H.1    Satou, K.2    Ho, T.B.3
  • 63
    • 79952198386 scopus 로고    scopus 로고
    • MIR @ NT @ N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model
    • Bechec AL, Portales-casamar E, Vetter G, et al. MIR @ NT @ N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model. BMC Bioinformatics 2011;12:67.
    • (2011) BMC Bioinformatics , vol.12 , pp. 67
    • Bechec, A.L.1    Portales-casamar, E.2    Vetter, G.3
  • 64
    • 84876784419 scopus 로고    scopus 로고
    • Identifying transcription factors and microRNAs as key regulators of pathways using Bayesian inference on known pathway structures
    • Roqueiro D, Huang L, Dai Y. Identifying transcription factors and microRNAs as key regulators of pathways using Bayesian inference on known pathway structures. Proteome Sci 2012;10(Suppl 1):S15.
    • (2012) Proteome Sci , vol.10 , pp. S15
    • Roqueiro, D.1    Huang, L.2    Dai, Y.3
  • 65
    • 84864592682 scopus 로고    scopus 로고
    • Uncovering microRNA and transcription factor mediated regulatory networks in glioblastoma
    • Sun J, Gong X, Purow B, et al. Uncovering microRNA and transcription factor mediated regulatory networks in glioblastoma. PLoSComput Biol 2012;8:e1002488.
    • (2012) PLoSComput Biol , vol.8 , pp. e1002488
    • Sun, J.1    Gong, X.2    Purow, B.3
  • 66
    • 84885666488 scopus 로고    scopus 로고
    • Identification of active transcription factor and miRNA regulatory pathways in Alzheimer's disease
    • Jiang W, Zhang Y, Meng F, et al. Identification of active transcription factor and miRNA regulatory pathways in Alzheimer's disease. Bioinformatics 2013;29:2596-602.
    • (2013) Bioinformatics , vol.29 , pp. 2596-2602
    • Jiang, W.1    Zhang, Y.2    Meng, F.3
  • 67
    • 79959997653 scopus 로고    scopus 로고
    • mirConnX: condition- specific mRNA-microRNA network integrator
    • Huang GT, Athanassiou C, Benos PV. mirConnX: condition- specific mRNA-microRNA network integrator. Nucleic Acids Res 2011;39:W416-23.
    • (2011) Nucleic Acids Res , vol.39 , pp. W416-W423
    • Huang, G.T.1    Athanassiou, C.2    Benos, P.V.3
  • 68
    • 84864013930 scopus 로고    scopus 로고
    • Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data
    • Zacher B, Abnaof K, Gade S, et al. Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data. Bioinformatics 2012;28:1714-20.
    • (2012) Bioinformatics , vol.28 , pp. 1714-1720
    • Zacher, B.1    Abnaof, K.2    Gade, S.3
  • 69
    • 84874810427 scopus 로고    scopus 로고
    • Inferring microRNA and transcription factor regulatory networks in heterogeneous data
    • Le TD, Liu L, Liu B, et al. Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinformatics 2013;14:92.
    • (2013) BMC Bioinformatics , vol.14 , pp. 92
    • Le, T.D.1    Liu, L.2    Liu, B.3
  • 70
    • 0037208166 scopus 로고    scopus 로고
    • TRANSFAC(R): transcriptional regulation, from patterns to profiles
    • Matys V. TRANSFAC(R): transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003;31:374-8.
    • (2003) Nucleic Acids Res , vol.31 , pp. 374-378
    • Matys, V.1
  • 71
    • 33750318273 scopus 로고    scopus 로고
    • A guide through present computational approaches for the identification of mammalian microRNA targets
    • Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational approaches for the identification of mammalian microRNA targets. NatMethods 2006;3:881-6.
    • (2006) NatMethods , vol.3 , pp. 881-886
    • Sethupathy, P.1    Megraw, M.2    Hatzigeorgiou, A.G.3
  • 72
    • 58149186499 scopus 로고    scopus 로고
    • miRecords: an integrated resource for microRNA-target interactions
    • Xiao F, Zuo Z, Cai G, et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009;37:D105-10.
    • (2009) Nucleic Acids Res , vol.37 , pp. D105-D110
    • Xiao, F.1    Zuo, Z.2    Cai, G.3
  • 73
    • 31044444975 scopus 로고    scopus 로고
    • TarBase: a comprehensive database of experimentally supported animal microRNA targets
    • Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 2006;12:192-7.
    • (2006) RNA , vol.12 , pp. 192-197
    • Sethupathy, P.1    Corda, B.2    Hatzigeorgiou, A.G.3
  • 74
    • 67149115119 scopus 로고    scopus 로고
    • Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs
    • Khan AA, Betel D, Miller ML, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 2009;27:549-55.
    • (2009) Nat Biotechnol , vol.27 , pp. 549-555
    • Khan, A.A.1    Betel, D.2    Miller, M.L.3
  • 75
    • 84874456193 scopus 로고    scopus 로고
    • A systematic evaluation of miRNA: mRNA interactions involved in the migration and invasion of breast cancer cells
    • Luo D, Wilson JM, Harvel N, et al. A systematic evaluation of miRNA: mRNA interactions involved in the migration and invasion of breast cancer cells. JTransMed 2013;11:57.
    • (2013) JTransMed , vol.11 , pp. 57
    • Luo, D.1    Wilson, J.M.2    Harvel, N.3
  • 76
    • 13944282215 scopus 로고    scopus 로고
    • Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
    • Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769-73.
    • (2005) Nature , vol.433 , pp. 769-773
    • Lim, L.P.1    Lau, N.C.2    Garrett-Engele, P.3
  • 77
    • 33947224690 scopus 로고    scopus 로고
    • Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression
    • Linsley PS, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 2007;27:2240-52.
    • (2007) Mol Cell Biol , vol.27 , pp. 2240-2252
    • Linsley, P.S.1    Schelter, J.2    Burchard, J.3
  • 78
    • 34250805982 scopus 로고    scopus 로고
    • MicroRNA targeting specificity in mammals: determinants beyond seed pairing
    • Grimson A, Farh KK-H, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007;27:91-105.
    • (2007) Mol Cell , vol.27 , pp. 91-105
    • Grimson, A.1    Farh, K.K.-H.2    Johnston, W.K.3
  • 79
    • 34250851115 scopus 로고    scopus 로고
    • A microRNA component of the p53 tumour suppressor network
    • He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-4.
    • (2007) Nature , vol.447 , pp. 1130-1134
    • He, L.1    He, X.2    Lim, L.P.3
  • 80
    • 49949117302 scopus 로고    scopus 로고
    • Widespread changes in protein synthesis induced by microRNAs
    • Selbach M, Schwanhaüsser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008;455:58-63.
    • (2008) Nature , vol.455 , pp. 58-63
    • Selbach, M.1    Schwanhaüsser, B.2    Thierfelder, N.3
  • 81
    • 34249817549 scopus 로고    scopus 로고
    • Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis
    • Chang T-C, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26:745-52.
    • (2007) Mol Cell , vol.26 , pp. 745-752
    • Chang, T.-C.1    Wentzel, E.A.2    Kent, O.A.3
  • 82
    • 33645472191 scopus 로고    scopus 로고
    • Systematic identification of microRNA functions by combining target prediction and expression profiling
    • Wang X, Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006;34:1646-52.
    • (2006) Nucleic Acids Res , vol.34 , pp. 1646-1652
    • Wang, X.1    Wang, X.2
  • 83
    • 79951751828 scopus 로고    scopus 로고
    • Identifying functional miRNA-mRNA regulatory modules with correspondence latent Dirichlet allocation
    • Liu B, Liu L, Tsykin A, et al. Identifying functional miRNA-mRNA regulatory modules with correspondence latent Dirichlet allocation. Bioinformatics 2010;26:3105-11.
    • (2010) Bioinformatics , vol.26 , pp. 3105-3111
    • Liu, B.1    Liu, L.2    Tsykin, A.3
  • 84
    • 0346801873 scopus 로고    scopus 로고
    • The Gene Ontology (GO) database and informatics resource
    • Harris M, Clark J, Ireland A, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258-61.
    • (2004) Nucleic Acids Res , vol.32 , pp. D258-D261
    • Harris, M.1    Clark, J.2    Ireland, A.3
  • 85
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 86
    • 67849088720 scopus 로고    scopus 로고
    • GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information
    • Nogales-Cadenas R, Carmona-Saez P, Vazquez M, et al. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res 2009;37:W317-22.
    • (2009) Nucleic Acids Res , vol.37 , pp. W317-W322
    • Nogales-Cadenas, R.1    Carmona-Saez, P.2    Vazquez, M.3
  • 87
    • 0000629281 scopus 로고
    • Mathematical contributions to the theory of evolution.-on a form of spurious correlation which may arise when indices are used in the measurement of organs
    • Pearson K. Mathematical contributions to the theory of evolution.-on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc RSoc L 1896;60:489-98.
    • (1896) Proc RSoc L , vol.60 , pp. 489-498
    • Pearson, K.1
  • 88
    • 83755163018 scopus 로고    scopus 로고
    • Detecting novel associations in large data sets
    • Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large data sets. Science 2011;334:1518-24.
    • (2011) Science , vol.334 , pp. 1518-1524
    • Reshef, D.N.1    Reshef, Y.A.2    Finucane, H.K.3
  • 89
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. JRStat Soc Ser B 1996;73:267-88.
    • (1996) JRStat Soc Ser B , vol.73 , pp. 267-288
    • Tibshirani, R.1
  • 90
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. JRStat Soc Ser B 2005;67:301-20.
    • (2005) JRStat Soc Ser B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 91
    • 0025775062 scopus 로고
    • Feasibility of a highflux anticancer drug screen using a diverse panel of cultured human tumor cell lines
    • Monks A, Scudiero D, Skehan P, et al. Feasibility of a highflux anticancer drug screen using a diverse panel of cultured human tumor cell lines. JNatl Cancer Inst 1991;83:757-66.
    • (1991) JNatl Cancer Inst , vol.83 , pp. 757-766
    • Monks, A.1    Scudiero, D.2    Skehan, P.3
  • 92
    • 79955759815 scopus 로고    scopus 로고
    • Global microRNA analysis of the NCI-60 cancer cell panel
    • Søkilde R, Kaczkowski B, Podolska A. Global microRNA analysis of the NCI-60 cancer cell panel. Mol CancerTher 2011;10:375-84.
    • (2011) Mol CancerTher , vol.10 , pp. 375-384
    • Søkilde, R.1    Kaczkowski, B.2    Podolska, A.3
  • 93
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 2001;98:15149-54.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 15149-15154
    • Ramaswamy, S.1    Tamayo, P.2    Rifkin, R.3
  • 94
    • 20444460289 scopus 로고    scopus 로고
    • MicroRNA expression profiles classify human cancers
    • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8.
    • (2005) Nature , vol.435 , pp. 834-838
    • Lu, J.1    Getz, G.2    Miska, E.A.3
  • 95
    • 84876283185 scopus 로고    scopus 로고
    • miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs
    • Riaz M, van Jaarsveld MT, Hollestelle A, et al. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res 2013;15:R33.
    • (2013) Breast Cancer Res , vol.15 , pp. R33
    • Riaz, M.1    van Jaarsveld, M.T.2    Hollestelle, A.3
  • 97
    • 84862176128 scopus 로고    scopus 로고
    • TarBase 6.0:capturing the exponential growth of miRNA targets with experimental support
    • Vergoulis T, Vlachos IS, Alexiou P, et al. TarBase 6.0:capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 2012;40:D222-9.
    • (2012) Nucleic Acids Res , vol.40 , pp. D222-D229
    • Vergoulis, T.1    Vlachos, I.S.2    Alexiou, P.3
  • 98
    • 79959805164 scopus 로고    scopus 로고
    • miRWalk-database:prediction of possible miRNA binding sites by walking the genes of three genomes
    • Dweep H, Sticht C, Pandey P, et al. miRWalk-database:prediction of possible miRNA binding sites by walking the genes of three genomes. J Biomed Inf 2011;44:839-47.
    • (2011) J Biomed Inf , vol.44 , pp. 839-847
    • Dweep, H.1    Sticht, C.2    Pandey, P.3
  • 99
    • 84872242932 scopus 로고    scopus 로고
    • mirTarPri: improved prioritization of MicroRNA targets through incorporation of functional genomics data
    • Wang P, Ning S, Wang Q, et al. mirTarPri: improved prioritization of MicroRNA targets through incorporation of functional genomics data. PLoS One 2013;8:e53685.
    • (2013) PLoS One , vol.8 , pp. e53685
    • Wang, P.1    Ning, S.2    Wang, Q.3
  • 100
    • 67749132423 scopus 로고    scopus 로고
    • Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
    • Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009;460:479-86.
    • (2009) Nature , vol.460 , pp. 479-486
    • Chi, S.W.1    Zang, J.B.2    Mele, A.3
  • 101
    • 77950920903 scopus 로고    scopus 로고
    • Transcriptomewide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
    • Hafner M, Landthaler M, Burger L, et al. Transcriptomewide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010;141:129-41.
    • (2010) Cell , vol.141 , pp. 129-141
    • Hafner, M.1    Landthaler, M.2    Burger, L.3
  • 102
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach D, Costello JC, Küffner R, et al. Wisdom of crowds for robust gene network inference. Nat Methods 2012;9:796-804.
    • (2012) Nat Methods , vol.9 , pp. 796-804
    • Marbach, D.1    Costello, J.C.2    Küffner, R.3
  • 103
    • 84898484796 scopus 로고    scopus 로고
    • Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases
    • Zhang H-M, Kuang S, Xiong X, et al. Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases. Brief Bioinform 2015;16:45-58.
    • (2015) Brief Bioinform , vol.16 , pp. 45-58
    • Zhang, H.-M.1    Kuang, S.2    Xiong, X.3
  • 104
    • 84890559595 scopus 로고    scopus 로고
    • Long non-coding RNAs: new players in cell differentiation and development
    • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014;15:7-21.
    • (2014) Nat Rev Genet , vol.15 , pp. 7-21
    • Fatica, A.1    Bozzoni, I.2
  • 105
    • 77951118936 scopus 로고    scopus 로고
    • Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis
    • Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010;464:1071-6.
    • (2010) Nature , vol.464 , pp. 1071-1076
    • Gupta, R.A.1    Shah, N.2    Wang, K.C.3
  • 106
    • 84891818924 scopus 로고    scopus 로고
    • starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
    • Li J-H, Liu S, Zhou H, et al. starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014;42:D92-7.
    • (2014) Nucleic Acids Res , vol.42 , pp. D92-D97
    • Li, J.-H.1    Liu, S.2    Zhou, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.