메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1983-1995

Breaking out of local optima with count transforms and model recombination: A study in grammar induction

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTATIONAL LINGUISTICS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84926302248     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (45)

References (99)
  • 1
    • 0030353367 scopus 로고    scopus 로고
    • Head automata for speech translation
    • H. Alshawi. 1996. Head automata for speech translation. In ICSLP.
    • (1996) ICSLP
    • Alshawi, H.1
  • 2
    • 0009230177 scopus 로고
    • Psychological probability as a function of experienced frequency
    • 46
    • F. Attneave. 1953. Psychological probability as a function of experienced frequency. Experimental Psychology, 46.
    • (1953) Experimental Psychology
    • Attneave, F.1
  • 3
    • 0000602959 scopus 로고
    • The base-rate fallacy in probability judgments
    • 44
    • M. Bar-Hillel. 1980. The base-rate fallacy in probability judgments. Acta Psychologica, 44.
    • (1980) Acta Psychologica
    • Bar-Hillel, M.1
  • 4
    • 84926309771 scopus 로고    scopus 로고
    • Discovering phonotactic finite-state automata by genetic search
    • A. Belz. 1998. Discovering phonotactic finite-state automata by genetic search. In COLING-ACL.
    • (1998) COLING-ACL
    • Belz, A.1
  • 7
    • 85072783522 scopus 로고    scopus 로고
    • Simple robust grammar induction with combinatory categorial grammars
    • Y. Bisk and J. Hockenmaier. 2012. Simple robust grammar induction with combinatory categorial grammars. In AAAI.
    • (2012) AAAI
    • Bisk, Y.1    Hockenmaier, J.2
  • 8
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unla-beled data with co-training
    • A. Blum and T. Mitchell. 1998. Combining labeled and unla-beled data with co-training. In COLT.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 9
    • 80053265528 scopus 로고    scopus 로고
    • Unsupervised induction of tree substitution grammars for dependency parsing
    • P. Blunsom and T. Cohn. 2010. Unsupervised induction of tree substitution grammars for dependency parsing. In EMNLP.
    • (2010) EMNLP
    • Blunsom, P.1    Cohn, T.2
  • 10
    • 85086490822 scopus 로고    scopus 로고
    • CoNLL-X shared task on multilingual dependency parsing
    • S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In CoNLL.
    • (2006) CoNLL
    • Buchholz, S.1    Marsi, E.2
  • 11
    • 84862288194 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2005 shared task: Semantic role labeling
    • X. Carreras and L. Màrquez. 2005. Introduction to the CoNLL-2005 shared task: Semantic role labeling. In CoNLL.
    • (2005) CoNLL
    • Carreras, X.1    Màrquez, L.2
  • 13
    • 85119333087 scopus 로고    scopus 로고
    • Inducing syntactic categories by context distribution clustering
    • A. Clark. 2000. Inducing syntactic categories by context distribution clustering. In CoNLL-LLL.
    • (2000) CoNLL-LLL
    • Clark, A.1
  • 14
    • 85094918571 scopus 로고    scopus 로고
    • Combining distributional and morphological information for part of speech induction
    • A. Clark. 2003. Combining distributional and morphological information for part of speech induction. In EACL.
    • (2003) EACL
    • Clark, A.1
  • 15
    • 84859976571 scopus 로고    scopus 로고
    • Viterbi training for PCFGs: Hardness results and competitiveness of uniform initialization
    • S. B. Cohen and N. A. Smith. 2010. Viterbi training for PCFGs: Hardness results and competitiveness of uniform initialization. In ACL.
    • (2010) ACL
    • Cohen, S.B.1    Smith, N.A.2
  • 16
  • 17
    • 85119383022 scopus 로고    scopus 로고
    • Unsupervised models for named entity classification
    • M. Collins and Y. Singer. 1999. Unsupervised models for named entity classification. In EMNLP.
    • (1999) EMNLP
    • Collins, M.1    Singer, Y.2
  • 19
    • 84859091464 scopus 로고    scopus 로고
    • An exact Å method for deciphering letter-substitution ciphers
    • E. Corlett and G. Penn. 2010. An exact Å method for deciphering letter-substitution ciphers. In ACL.
    • (2010) ACL
    • Corlett, E.1    Penn, G.2
  • 21
    • 84874201872 scopus 로고
    • Lexical heads, phrase structure and the induction of grammar
    • C. de Marcken. 1995. Lexical heads, phrase structure and the induction of grammar. In WVLC.
    • (1995) WVLC
    • De Marcken, C.1
  • 22
    • 85119098721 scopus 로고    scopus 로고
    • Automatic learning of language model structure
    • K. Duh and K. Kirchhoff. 2004. Automatic learning of language model structure. In COLING.
    • (2004) COLING
    • Duh, K.1    Kirchhoff, K.2
  • 23
    • 84926370112 scopus 로고    scopus 로고
    • Grammar induction: Beyond local search
    • J. Eisner. 2012. Grammar induction: Beyond local search. In ICGI.
    • (2012) ICGI
    • Eisner, J.1
  • 24
    • 84926326864 scopus 로고    scopus 로고
    • Data perturbation for escaping local maxima in learning
    • G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. 2002. Data perturbation for escaping local maxima in learning. In AAAI.
    • (2002) AAAI
    • Elidan, G.1    Ninio, M.2    Friedman, N.3    Schuurmans, D.4
  • 25
    • 0027636611 scopus 로고
    • Learning and development in neural networks: The importance of starting small
    • 48
    • J. L. Elman. 1993. Learning and development in neural networks: The importance of starting small. Cognition, 48.
    • (1993) Cognition
    • Elman, J.L.1
  • 27
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
    • C. M. Fonseca and P. J. Fleming. 1993. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In ICGA.
    • (1993) ICGA
    • Fonseca, C.M.1    Fleming, P.J.2
  • 28
    • 84926371975 scopus 로고
    • Markov chain Monte Carlo maximum likelihood
    • C. J. Geyer. 1991. Markov chain Monte Carlo maximum likelihood. In Interface Symposium.
    • (1991) Interface Symposium
    • Geyer, C.J.1
  • 30
    • 84903468764 scopus 로고    scopus 로고
    • Concavity and initialization for unsupervised dependency parsing
    • K. Gimpel and N. A. Smith. 2012. Concavity and initialization for unsupervised dependency parsing. In NAACL-HLT.
    • (2012) NAACL-HLT
    • Gimpel, K.1    Smith, N.A.2
  • 34
    • 84926360672 scopus 로고    scopus 로고
    • A feature-rich constituent context model for grammar induction
    • D. Golland, J. DeNero, and J. Uszkoreit. 2012. A feature-rich constituent context model for grammar induction. In EMNLP-CoNLL.
    • (2012) EMNLP-CoNLL
    • Golland, D.1    Denero, J.2    Uszkoreit, J.3
  • 35
    • 84907374772 scopus 로고    scopus 로고
    • Nonconvex global optimization for latent-variable models
    • M. R. Gormley and J. Eisner. 2013. Nonconvex global optimization for latent-variable models. In ACL.
    • (2013) ACL
    • Gormley, M.R.1    Eisner, J.2
  • 36
    • 84863408489 scopus 로고    scopus 로고
    • Improving unsupervised dependency parsing with richer contexts and smoothing
    • W. P. Headden, III, M. Johnson, and D. McClosky. 2009. Improving unsupervised dependency parsing with richer contexts and smoothing. In NAACL-HLT.
    • (2009) NAACL-HLT
    • Headden, W.P.1    Johnson, M.2    McClosky, D.3
  • 37
    • 84898964829 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • G. Hinton and S. Roweis. 2003. Stochastic neighbor embedding. In NIPS.
    • (2003) NIPS
    • Hinton, G.1    Roweis, S.2
  • 41
    • 0030168535 scopus 로고    scopus 로고
    • Comparison of genetic algorithms, random restart, and two-opt switching for solving large location-allocation problems
    • 23
    • C. R. Houck, J. A. Joines, and M. G. Kay. 1996. Comparison of genetic algorithms, random restart, and two-opt switching for solving large location-allocation problems. Computers & Operations Research, 23.
    • (1996) Computers & Operations Research
    • Houck, C.R.1    Joines, J.A.2    Kay, M.G.3
  • 43
    • 84883444002 scopus 로고    scopus 로고
    • Improved constituent context model with features
    • Y. Huang, M. Zhang, and C. L. Tan. 2012. Improved constituent context model with features. In PACLIC.
    • (2012) PACLIC
    • Huang, Y.1    Zhang, M.2    Tan, C.L.3
  • 44
    • 0019114666 scopus 로고
    • Interpolated estimation of Markov source parameters from sparse data
    • F. Jelinek and R. L. Mercer. 1980. Interpolated estimation of Markov source parameters from sparse data. In Pattern Recognition in Practice.
    • (1980) Pattern Recognition in Practice
    • Jelinek, F.1    Mercer, R.L.2
  • 46
    • 49649138413 scopus 로고
    • Subjective probability: A judgment of representativeness
    • 3
    • D. Kahneman and A. Tversky. 1972. Subjective probability: A judgment of representativeness. Cognitive Psychology, 3.
    • (1972) Cognitive Psychology
    • Kahneman, D.1    Tversky, A.2
  • 48
    • 0002083066 scopus 로고
    • Evidential impact of base rates
    • D. Kahneman, P. Slovic, and A. Tversky, editors Cambridge University Press
    • D. Kahneman and A. Tversky. 1982. Evidential impact of base rates. In D. Kahneman, P. Slovic, and A. Tversky, editors, Judgment under uncertainty: Heuristics and biases. Cambridge University Press.
    • (1982) Judgment Under Uncertainty: Heuristics and Biases
    • Kahneman, D.1    Tversky, A.2
  • 49
    • 0041376679 scopus 로고    scopus 로고
    • Optimization models of sound systems using genetic algorithms
    • 29
    • J. Ke, M. Ogura, and W. S.-Y. Wang. 2003. Optimization models of sound systems using genetic algorithms. Computational Linguistics, 29.
    • (2003) Computational Linguistics
    • Ke, J.1    Ogura, M.2    Wang, W.S.-Y.3
  • 50
    • 80053395899 scopus 로고    scopus 로고
    • Generative alignment and semantic parsing for learning from ambiguous supervision
    • J. Kim and R. J. Mooney. 2010. Generative alignment and semantic parsing for learning from ambiguous supervision. In COLING.
    • (2010) COLING
    • Kim, J.1    Mooney, R.J.2
  • 52
    • 85061893834 scopus 로고    scopus 로고
    • A generative constituentcontext model for improved grammar induction
    • D. Klein and C. D. Manning. 2002. A generative constituentcontext model for improved grammar induction. In ACL.
    • (2002) ACL
    • Klein, D.1    Manning, C.D.2
  • 53
    • 29344466697 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • D. Klein and C. D. Manning. 2004. Corpus-based induction of syntactic structure: Models of dependency and constituency. In ACL.
    • (2004) ACL
    • Klein, D.1    Manning, C.D.2
  • 55
    • 59649113160 scopus 로고    scopus 로고
    • Flexible shaping: How learning in small steps helps
    • 110
    • K. A. Krueger and P. Dayan. 2009. Flexible shaping: How learning in small steps helps. Cognition, 110.
    • (2009) Cognition
    • Krueger, K.A.1    Dayan, P.2
  • 56
    • 85161965460 scopus 로고    scopus 로고
    • Convex clustering with exemplar-based models
    • D. Lashkari and P. Golland. 2008. Convex clustering with exemplar-based models. In NIPS.
    • (2008) NIPS
    • Lashkari, D.1    Golland, P.2
  • 57
    • 78651340127 scopus 로고    scopus 로고
    • Online EM for unsupervised models
    • P. Liang and D. Klein. 2009. Online EM for unsupervised models. In NAACL-HLT.
    • (2009) NAACL-HLT
    • Liang, P.1    Klein, D.2
  • 60
    • 84899972158 scopus 로고    scopus 로고
    • Stop-probability estimates computed on a large corpus improve unsupervised dependency parsing
    • D. Mareček and M. Straka. 2013. Stop-probability estimates computed on a large corpus improve unsupervised dependency parsing. In ACL.
    • (2013) ACL
    • Mareček, D.1    Straka, M.2
  • 61
    • 84883403743 scopus 로고    scopus 로고
    • Gibbs sampling with treeness constraint in unsupervised dependency parsing
    • D. Mareček and Z. Žabokrtský. 2011. Gibbs sampling with treeness constraint in unsupervised dependency parsing. In ROBUS.
    • (2011) ROBUS
    • Mareček, D.1    Žabokrtský, Z.2
  • 62
    • 84883376414 scopus 로고    scopus 로고
    • Exploiting reducibility in unsupervised dependency parsing
    • D. Mareček and Z. Žabokrtský. 2012. Exploiting reducibility in unsupervised dependency parsing. In EMNLP-CoNLL.
    • (2012) EMNLP-CoNLL
    • Mareček, D.1    Žabokrtský, Z.2
  • 64
    • 80051974621 scopus 로고    scopus 로고
    • Plot induction and evolutionary search for story generation
    • N. McIntyre and M. Lapata. 2010. Plot induction and evolutionary search for story generation. In ACL.
    • (2010) ACL
    • McIntyre, N.1    Lapata, M.2
  • 67
    • 77955903325 scopus 로고    scopus 로고
    • Random restarts in minimum error rate training for statistical machine translation
    • R. C. Moore and C. Quirk. 2008. Random restarts in minimum error rate training for statistical machine translation. In COLING.
    • (2008) COLING
    • Moore, R.C.1    Quirk, C.2
  • 68
    • 84926375490 scopus 로고    scopus 로고
    • Using semantic cues to learn syntax
    • T. Naseem and R. Barzilay. 2011. Using semantic cues to learn syntax. In AAAI.
    • (2011) AAAI
    • Naseem, T.1    Barzilay, R.2
  • 69
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor MIT Press
    • R. M. Neal and G. E. Hinton. 1999. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models. MIT Press.
    • (1999) Learning in Graphical Models
    • Neal, R.M.1    Hinton, G.E.2
  • 71
    • 79952268599 scopus 로고    scopus 로고
    • Cubic-time parsing and learning algorithms for grammatical bigram models
    • M. A. Paskin. 2001a. Cubic-time parsing and learning algorithms for grammatical bigram models. Technical report, UCB.
    • (2001) Technical Report, UCB
    • Paskin, M.A.1
  • 72
    • 52149102347 scopus 로고    scopus 로고
    • Grammatical bigrams
    • M. A. Paskin. 2001b. Grammatical bigrams. In NIPS.
    • (2001) NIPS
    • Paskin, M.A.1
  • 73
    • 85059598488 scopus 로고
    • Inside-outside reestimation from partially bracketed corpora
    • F. Pereira and Y. Schabes. 1992. Inside-outside reestimation from partially bracketed corpora. In ACL.
    • (1992) ACL
    • Pereira, F.1    Schabes, Y.2
  • 74
    • 79551488594 scopus 로고    scopus 로고
    • Products of random latent variable grammars
    • S. Petrov. 2010. Products of random latent variable grammars. In NAACL-HLT.
    • (2010) NAACL-HLT
    • Petrov, S.1
  • 75
    • 84859054892 scopus 로고    scopus 로고
    • Simple unsuper-vised grammar induction from raw text with cascaded finite state models
    • E. Ponvert, J. Baldridge, and K. Erk. 2011. Simple unsuper-vised grammar induction from raw text with cascaded finite state models. In ACL-HLT.
    • (2011) ACL-HLT
    • Ponvert, E.1    Baldridge, J.2    Erk, K.3
  • 77
    • 84859916726 scopus 로고    scopus 로고
    • Minimized models for unsuper-vised part-of-speech tagging
    • S. Ravi and K. Knight. 2009. Minimized models for unsuper-vised part-of-speech tagging. In ACL-IJCNLP.
    • (2009) ACL-IJCNLP
    • Ravi, S.1    Knight, K.2
  • 78
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression and related optmization problems
    • 86
    • K. Rose. 1998. Deterministic annealing for clustering, compression, classification, regression and related optmization problems. Proceedings of the IEEE, 86.
    • (1998) Proceedings of the IEEE
    • Rose, K.1
  • 79
    • 80053271788 scopus 로고    scopus 로고
    • Fast unsupervised incremental parsing
    • Y. Seginer. 2007. Fast unsupervised incremental parsing. In ACL.
    • (2007) ACL
    • Seginer, Y.1
  • 80
    • 0002928523 scopus 로고
    • A new method for solving hard satisfiability problems
    • B. Selman, H. Levesque, and D. Mitchell. 1992. A new method for solving hard satisfiability problems. In AAAI.
    • (1992) AAAI
    • Selman, B.1    Levesque, H.2    Mitchell, D.3
  • 81
    • 0000218282 scopus 로고
    • Noise strategies for improving local search
    • B. Selman, H. A. Kautz, and B. Cohen. 1994. Noise strategies for improving local search. In AAAI.
    • (1994) AAAI
    • Selman, B.1    Kautz, H.A.2    Cohen, B.3
  • 83
    • 84926382983 scopus 로고    scopus 로고
    • Baby steps: How "Less is more" in unsupervised dependency parsing
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2009. Baby Steps: How "Less is More" in unsupervised dependency parsing. In GRLL.
    • (2009) GRLL
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 85
    • 80053220392 scopus 로고    scopus 로고
    • Lateen EM: Unsupervised training with multiple objectives, applied to dependency grammar induction
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2011a. Lateen EM: Unsupervised training with multiple objectives, applied to dependency grammar induction. In EMNLP.
    • (2011) EMNLP
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 86
    • 84862289780 scopus 로고    scopus 로고
    • Punctuation: Making a point in unsupervised dependency parsing
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2011b. Punctuation: Making a point in unsupervised dependency parsing. In CoNLL.
    • (2011) CoNLL
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 87
    • 80053281097 scopus 로고    scopus 로고
    • Unsupervised dependency parsing without gold part-of-speech tags
    • V. I. Spitkovsky, A. X. Chang, H. Alshawi, and D. Jurafsky. 2011c. Unsupervised dependency parsing without gold part-of-speech tags. In EMNLP.
    • (2011) EMNLP
    • Spitkovsky, V.I.1    Chang, A.X.2    Alshawi, H.3    Jurafsky, D.4
  • 88
    • 84926362714 scopus 로고    scopus 로고
    • Bootstrapping dependency grammar inducers from incomplete sentence fragments via austere models
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2012a. Bootstrapping dependency grammar inducers from incomplete sentence fragments via austere models. In ICGI.
    • (2012) ICGI
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 89
    • 84883345730 scopus 로고    scopus 로고
    • Three dependency-and-boundary models for grammar induction
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2012b. Three dependency-and-boundary models for grammar induction. In EMNLP-CoNLL.
    • (2012) EMNLP-CoNLL
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 91
    • 84859074855 scopus 로고    scopus 로고
    • Semi-supervised relation extraction with large-scale word clustering
    • A. Sun, R. Grishman, and S. Sekine. 2011. Semi-supervised relation extraction with large-scale word clustering. In ACL.
    • (2011) ACL
    • Sun, A.1    Grishman, R.2    Sekine, S.3
  • 92
    • 84858390758 scopus 로고    scopus 로고
    • Ensemble models for dependency parsing: Cheap and good?
    • M. Surdeanu and C. D. Manning. 2010. Ensemble models for dependency parsing: Cheap and good? In NAACL-HLT.
    • (2010) NAACL-HLT
    • Surdeanu, M.1    Manning, C.D.2
  • 93
    • 84868299604 scopus 로고    scopus 로고
    • On the utility of curricula in unsupervised learning of probabilistic grammars
    • K. Tu and V. Honavar. 2011. On the utility of curricula in unsupervised learning of probabilistic grammars. In IJCAI.
    • (2011) IJCAI
    • Tu, K.1    Honavar, V.2
  • 94
    • 84883368614 scopus 로고    scopus 로고
    • Unambiguity regularization for unsupervised learning of probabilistic grammars
    • K. Tu and V. Honavar. 2012. Unambiguity regularization for unsupervised learning of probabilistic grammars. In EMNLP-CoNLL.
    • (2012) EMNLP-CoNLL
    • Tu, K.1    Honavar, V.2
  • 95
    • 34247529903 scopus 로고
    • Availability: A heuristic for judging frequency and probability
    • 5
    • A. Tversky and D. Kahneman. 1973. Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5.
    • (1973) Cognitive Psychology
    • Tversky, A.1    Kahneman, D.2
  • 96
  • 97
    • 84926320508 scopus 로고    scopus 로고
    • Semi-supervised convex training for dependency parsing
    • Q. I. Wang, D. Schuurmans, and D. Lin. 2008. Semi-supervised convex training for dependency parsing. In HLT-ACL.
    • (2008) HLT-ACL
    • Wang, Q.I.1    Schuurmans, D.2    Lin, D.3
  • 98
    • 80053290258 scopus 로고    scopus 로고
    • Boosting-based system combination for machine translation
    • T. Xiao, J. Zhu, M. Zhu, and H. Wang. 2010. Boosting-based system combination for machine translation. In ACL.
    • (2010) ACL
    • Xiao, T.1    Zhu, J.2    Zhu, M.3    Wang, H.4
  • 99
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • D. Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In ACL.
    • (1995) ACL
    • Yarowsky, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.