메뉴 건너뛰기




Volumn , Issue , 2012, Pages 688-698

Three dependency-and-boundary models for grammar induction

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY MODELS; DEPENDENCY GRAMMAR; DEPENDENCY TREES; DISTRIBUTIONS OF WORDS; GRAMMAR INDUCTION; INITIALIZERS; SENTENCE BOUNDARIES; SENTENCE LENGTH;

EID: 84883345730     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (56)
  • 1
    • 0039330854 scopus 로고    scopus 로고
    • Learning dependency translation models as collections of finite-state head transducers
    • 26
    • H. Alshawi, S. Bangalore, and S. Douglas. 2000. Learning dependency translation models as collections of finite-state head transducers. Computational Linguistics, 26.
    • (2000) Computational Linguistics
    • Alshawi, H.1    Bangalore, S.2    Douglas, S.3
  • 2
    • 0030353367 scopus 로고    scopus 로고
    • Head automata for speech translation
    • H. Alshawi. 1996a. Head automata for speech translation. In ICSLP.
    • (1996) ICSLP
    • Alshawi, H.1
  • 6
    • 84883428888 scopus 로고    scopus 로고
    • Boosting unsupervised grammar induction by splitting complex sentences on function words
    • J. Berant, Y. Gross, M. Mussel, B. Sandbank, E. Ruppin, and S. Edelman. 2006. Boosting unsupervised grammar induction by splitting complex sentences on function words. In BUCLD.
    • (2006) BUCLD
    • Berant, J.1    Gross, Y.2    Mussel, M.3    Sandbank, B.4    Ruppin, E.5    Edelman, S.6
  • 7
  • 9
    • 0002215069 scopus 로고
    • On a measure of divergence between two statistical populations defined by their probability distributions
    • 35
    • A. Bhattacharyya. 1943. On a measure of divergence between two statistical populations defined by their probability distributions. BCMS, 35.
    • (1943) BCMS
    • Bhattacharyya, A.1
  • 10
    • 25844498898 scopus 로고    scopus 로고
    • Intricacies of collins' parsing model
    • 30
    • D. M. Bikel. 2004. Intricacies of Collins' parsing model. Computational Linguistics, 30.
    • (2004) Computational Linguistics
    • Bikel, D.M.1
  • 11
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unla-beled data with co-training
    • A. Blum and T. Mitchell. 1998. Combining labeled and unla-beled data with co-training. In COLT.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 12
    • 0035452895 scopus 로고    scopus 로고
    • The role of exposure to isolated words in early vocabulary development
    • 81
    • M. R. Brent and J. M. Siskind. 2001. The role of exposure to isolated words in early vocabulary development. Cognition, 81.
    • (2001) Cognition
    • Brent, M.R.1    Siskind, J.M.2
  • 14
    • 85086490822 scopus 로고    scopus 로고
    • CoNLL-X shared task on multilingual dependency parsing
    • S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In CoNLL.
    • (2006) CoNLL
    • Buchholz, S.1    Marsi, E.2
  • 15
    • 1642346175 scopus 로고
    • Two experiments on learning probabilistic dependency grammars from corpora
    • G. Carroll and E. Charniak. 1992. Two experiments on learning probabilistic dependency grammars from corpora. Technical report, Brown University.
    • (1992) Technical Report, Brown University
    • Carroll, G.1    Charniak, E.2
  • 16
    • 84858398441 scopus 로고    scopus 로고
    • Shared logistic normal distributions for soft parameter tying in unsupervised grammar induction
    • S. B. Cohen and N. A. Smith. 2009. Shared logistic normal distributions for soft parameter tying in unsupervised grammar induction. In NAACL-HLT.
    • (2009) NAACL-HLT
    • Cohen, S.B.1    Smith, N.A.2
  • 17
    • 84859976571 scopus 로고    scopus 로고
    • Viterbi training for PCFGs: Hardness results and competitiveness of uniform initialization
    • S. B. Cohen and N. A. Smith. 2010. Viterbi training for PCFGs: Hardness results and competitiveness of uniform initialization. In ACL.
    • (2010) ACL
    • Cohen, S.B.1    Smith, N.A.2
  • 18
    • 80053226161 scopus 로고    scopus 로고
    • Unsupervised structure prediction with non-parallel multilingual guidance
    • S. B. Cohen, D. Das, and N. A. Smith. 2011. Unsupervised structure prediction with non-parallel multilingual guidance. In EMNLP.
    • (2011) EMNLP
    • Cohen, S.B.1    Das, D.2    Smith, N.A.3
  • 19
    • 85118152899 scopus 로고    scopus 로고
    • Three generative, lexicalised models for statistical parsing
    • M. Collins. 1997. Three generative, lexicalised models for statistical parsing. In ACL.
    • (1997) ACL
    • Collins, M.1
  • 21
    • 4043082208 scopus 로고    scopus 로고
    • Head-driven statistical models for natural language parsing
    • 29
    • M. Collins. 2003. Head-driven statistical models for natural language parsing. Computational Linguistics, 29.
    • (2003) Computational Linguistics
    • Collins, M.1
  • 22
    • 85149142007 scopus 로고    scopus 로고
    • Efficient parsing for bilexical context-free grammars and head-automaton grammars
    • J. Eisner and G. Satta. 1999. Efficient parsing for bilexical context-free grammars and head-automaton grammars. In ACL.
    • (1999) ACL
    • Eisner, J.1    Satta, G.2
  • 23
    • 0005994969 scopus 로고    scopus 로고
    • An empirical comparison of probability models for dependency grammar
    • J. M. Eisner. 1996. An empirical comparison of probability models for dependency grammar. Technical report, IRCS.
    • (1996) Technical Report, IRCS
    • Eisner, J.M.1
  • 24
    • 0042357353 scopus 로고    scopus 로고
    • Bilexical grammars and their cubic-time parsing algorithms
    • H. C. Bunt and A. Nijholt, editors Kluwer Academic Publishers
    • J. Eisner. 2000. Bilexical grammars and their cubic-time parsing algorithms. In H. C. Bunt and A. Nijholt, editors, Advances in Probabilistic and Other Parsing Technologies. Kluwer Academic Publishers.
    • (2000) Advances in Probabilistic and Other Parsing Technologies
    • Eisner, J.1
  • 25
    • 0027636611 scopus 로고
    • Learning and development in neural networks: The importance of starting small
    • 48
    • J. L. Elman. 1993. Learning and development in neural networks: The importance of starting small. Cognition, 48.
    • (1993) Cognition
    • Elman, J.L.1
  • 26
    • 0742309543 scopus 로고    scopus 로고
    • From regular to context-free to mildly context-sensitive tree rewriting systems: The path of child language acquisition
    • A. Abeillé and O. Rambow, editors CSLI Publications
    • R. Frank. 2000. From regular to context-free to mildly context-sensitive tree rewriting systems: The path of child language acquisition. In A. Abeillé and O. Rambow, editors, Tree Adjoining Grammars: Formalisms, Linguistic Analysis and Processing. CSLI Publications.
    • (2000) Tree Adjoining Grammars: Formalisms, Linguistic Analysis and Processing
    • Frank, R.1
  • 29
    • 80053221837 scopus 로고    scopus 로고
    • Concavity and initialization for unsupervised dependency grammar induction
    • K. Gimpel and N. A. Smith. 2011. Concavity and initialization for unsupervised dependency grammar induction. Technical report, CMU.
    • (2011) Technical Report, CMU
    • Gimpel, K.1    Smith, N.A.2
  • 30
    • 84862283522 scopus 로고    scopus 로고
    • Improvements in unsupervised co-occurrence based parsing
    • C. Hänig. 2010. Improvements in unsupervised co-occurrence based parsing. In CoNLL.
    • (2010) CoNLL
    • Hänig, C.1
  • 31
    • 84863408489 scopus 로고    scopus 로고
    • Improving unsupervised dependency parsing with richer contexts and smoothing
    • W. P. Headden, III, M. Johnson, and D. McClosky. 2009. Improving unsupervised dependency parsing with richer contexts and smoothing. In NAACL-HLT.
    • (2009) NAACL-HLT
    • Headden III, W.P.1    Johnson, M.2    McClosky, D.3
  • 32
    • 34547991476 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • D. Klein and C. D. Manning. 2004. Corpus-based induction of syntactic structure: Models of dependency and constituency. In ACL.
    • (2004) ACL
    • Klein, D.1    Manning, C.D.2
  • 33
    • 59649113160 scopus 로고    scopus 로고
    • Flexible shaping: How learning in small steps helps
    • 110
    • K. A. Krueger and P. Dayan. 2009. Flexible shaping: How learning in small steps helps. Cognition, 110.
    • (2009) Cognition
    • Krueger, K.A.1    Dayan, P.2
  • 35
    • 84883403743 scopus 로고    scopus 로고
    • Gibbs sampling with treeness constraint in unsupervised dependency parsing
    • D. Mareček and Z. Zabokrtský. 2011. Gibbs sampling with treeness constraint in unsupervised dependency parsing. In ROBUS.
    • (2011) ROBUS
    • Mareček, D.1    Zabokrtský, Z.2
  • 36
    • 79952749195 scopus 로고    scopus 로고
    • Modeling valence effects in unsupervised grammar induction
    • D. McClosky. 2008. Modeling valence effects in unsupervised grammar induction. Technical report, Brown University.
    • (2008) Technical Report, Brown University
    • McClosky, D.1
  • 37
    • 80053242016 scopus 로고    scopus 로고
    • Multi-source transfer of delexicalized dependency parsers
    • R. McDonald, S. Petrov, and K. Hall. 2011. Multi-source transfer of delexicalized dependency parsers. In EMNLP.
    • (2011) EMNLP
    • McDonald, R.1    Petrov, S.2    Hall, K.3
  • 38
    • 80053240894 scopus 로고    scopus 로고
    • Using universal linguistic knowledge to guide grammar induction
    • T. Naseem, H. Chen, R. Barzilay, and M. Johnson. 2010. Using universal linguistic knowledge to guide grammar induction. In EMNLP.
    • (2010) EMNLP
    • Naseem, T.1    Chen, H.2    Barzilay, R.3    Johnson, M.4
  • 39
    • 40549123182 scopus 로고    scopus 로고
    • Hellinger distance
    • M. Hazewinkel, editor Kluwer Academic Publishers
    • M. S. Nikulin. 2002. Hellinger distance. In M. Hazewinkel, editor, Encyclopaedia of Mathematics. Kluwer Academic Publishers.
    • (2002) Encyclopaedia of Mathematics
    • Nikulin, M.S.1
  • 41
    • 79952268599 scopus 로고    scopus 로고
    • Cubic-time parsing and learning algorithms for grammatical bigram models
    • M. A. Paskin. 2001a. Cubic-time parsing and learning algorithms for grammatical bigram models. Technical report, UCB.
    • (2001) Technical Report, UCB
    • Paskin, M.A.1
  • 42
    • 52149102347 scopus 로고    scopus 로고
    • Grammatical bigrams
    • M. A. Paskin. 2001b. Grammatical bigrams. In NIPS.
    • (2001) NIPS
    • Paskin, M.A.1
  • 43
    • 85059598488 scopus 로고
    • Inside-outside reestimation from partially bracketed corpora
    • F. Pereira and Y. Schabes. 1992. Inside-outside reestimation from partially bracketed corpora. In ACL.
    • (1992) ACL
    • Pereira, F.1    Schabes, Y.2
  • 44
    • 79952066740 scopus 로고    scopus 로고
    • Simple unsuper-vised identification of low-level constituents
    • E. Ponvert, J. Baldridge, and K. Erk. 2010. Simple unsuper-vised identification of low-level constituents. In ICSC.
    • (2010) ICSC
    • Ponvert, E.1    Baldridge, J.2    Erk, K.3
  • 45
    • 84907313313 scopus 로고    scopus 로고
    • Fast unsupervised dependency parsing with arc-standard transitions
    • M. S. Rasooli and H. Faili. 2012. Fast unsupervised dependency parsing with arc-standard transitions. In ROBUS-UNSUP.
    • (2012) ROBUS-UNSUP
    • Rasooli, M.S.1    Faili, H.2
  • 48
    • 84858838547 scopus 로고    scopus 로고
    • Data point selection for cross-language adaptation of dependency parsers
    • A. Søgaard. 2011a. Data point selection for cross-language adaptation of dependency parsers. In ACL.
    • (2011) ACL
    • Søgaard, A.1
  • 49
    • 84883286938 scopus 로고    scopus 로고
    • From ranked words to dependency trees: Two-stage unsupervised non-projective dependency parsing
    • A. Søgaard. 2011b. From ranked words to dependency trees: two-stage unsupervised non-projective dependency parsing. In TextGraphs.
    • (2011) TextGraphs
    • Søgaard, A.1
  • 51
    • 80053220392 scopus 로고    scopus 로고
    • Lateen EM: Unsupervised training with multiple objectives, applied to dependency grammar induction
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2011a. Lateen EM: Unsupervised training with multiple objectives, applied to dependency grammar induction. In EMNLP.
    • (2011) EMNLP
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 52
    • 84862289780 scopus 로고    scopus 로고
    • Punctuation: Making a point in unsupervised dependency parsing
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2011b. Punctuation: Making a point in unsupervised dependency parsing. In CoNLL.
    • (2011) CoNLL
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 54
    • 84963952665 scopus 로고    scopus 로고
    • Capitalization cues improve dependency grammar induction
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2012b. Capitalization cues improve dependency grammar induction. In WILS.
    • (2012) WILS
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 55
    • 84868299604 scopus 로고    scopus 로고
    • On the utility of curricula in unsupervised learning of probabilistic grammars
    • K. Tu and V. Honavar. 2011. On the utility of curricula in unsupervised learning of probabilistic grammars. In IJCAI.
    • (2011) IJCAI
    • Tu, K.1    Honavar, V.2
  • 56
    • 9444286794 scopus 로고    scopus 로고
    • Converting dependency structures to phrase structures
    • F. Xia and M. Palmer. 2001. Converting dependency structures to phrase structures. In HLT.
    • (2001) HLT
    • Xia, F.1    Palmer, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.