메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1269-1280

Lateen EM: Unsupervised training with multiple objectives, applied to dependency grammar induction

Author keywords

[No Author keywords available]

Indexed keywords

DEPENDENCY GRAMMAR; DEPENDENCY PARSING; EM ALGORITHMS; EXPECTATION-MAXIMIZATION ALGORITHMS; FIXED POINTS; LOCAL OPTIMA; MULTIPLE OBJECTIVES; TRAINING METHODS; UNSUPERVISED TRAINING;

EID: 80053220392     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (62)
  • 3
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • S. Arlot and A. Celisse. 2010. A survey of cross-validation procedures for model selection. Statistics Surveys, 4.
    • (2010) Statistics Surveys , vol.4
    • Arlot, S.1    Celisse, A.2
  • 5
    • 33750738734 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • M.-F. Balcan, A. Blum, and K. Yang. 2004. Co-training and expansion: Towards bridging theory and practice. In NIPS.
    • (2004) NIPS
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 7
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. 1998. Combining labeled and unlabeled data with co-training. In COLT.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 8
    • 80053265528 scopus 로고    scopus 로고
    • Unsupervised induction of tree substitution grammars for dependency parsing
    • P. Blunsom and T. Cohn. 2010. Unsupervised induction of tree substitution grammars for dependency parsing. In EMNLP.
    • (2010) EMNLP
    • Blunsom, P.1    Cohn, T.2
  • 10
    • 85086490822 scopus 로고    scopus 로고
    • CoNLL-X shared task on multilingual dependency parsing
    • S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In CoNLL.
    • (2006) CoNLL
    • Buchholz, S.1    Marsi, E.2
  • 11
    • 15544385219 scopus 로고    scopus 로고
    • Co-training with a single natural feature set applied to email classification
    • J. Chan, I. Koprinska, and J. Poon. 2004. Co-training with a single natural feature set applied to email classification. In WI.
    • (2004) WI
    • Chan, J.1    Koprinska, I.2    Poon, J.3
  • 12
    • 57749120009 scopus 로고    scopus 로고
    • Guiding semi-supervision with constraint-driven learning
    • M.-W. Chang, L. Ratinov, and D. Roth. 2007. Guiding semi-supervision with constraint-driven learning. In ACL.
    • (2007) ACL
    • Chang, M.-W.1    Ratinov, L.2    Roth, D.3
  • 13
    • 0031343557 scopus 로고    scopus 로고
    • Statistical techniques for natural language parsing
    • E. Charniak. 1997. Statistical techniques for natural language parsing. AI Magazine, 18.
    • (1997) AI Magazine , vol.18
    • Charniak, E.1
  • 14
    • 84858398441 scopus 로고    scopus 로고
    • Shared logistic normal distributions for soft parameter tying in unsu-pervised grammar induction
    • S. B. Cohen and N. A. Smith. 2009. Shared logistic normal distributions for soft parameter tying in unsu-pervised grammar induction. In NAACL-HLT.
    • (2009) NAACL-HLT
    • Cohen, S.B.1    Smith, N.A.2
  • 15
    • 85119383022 scopus 로고    scopus 로고
    • Unsupervised models for named entity classification
    • M. Collins and Y. Singer. 1999. Unsupervised models for named entity classification. In EMNLP.
    • (1999) EMNLP
    • Collins, M.1    Singer, Y.2
  • 20
    • 78149341301 scopus 로고    scopus 로고
    • Iterative clustering of high dimensional text data augmented by local search
    • I. S. Dhillon, Y. Guan, and J. Kogan. 2002. Iterative clustering of high dimensional text data augmented by local search. In ICDM.
    • (2002) ICDM
    • Dhillon, I.S.1    Guan, Y.2    Kogan, J.3
  • 21
    • 84858394602 scopus 로고
    • Does baum-welch re-estimation help taggers?
    • D. Elworthy. 1994. Does Baum-Welch re-estimation help taggers? In ANLP.
    • (1994) ANLP
    • Elworthy, D.1
  • 24
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • S. Goldman and Y. Zhou. 2000. Enhancing supervised learning with unlabeled data. In ICML.
    • (2000) ICML
    • Goldman, S.1    Zhou, Y.2
  • 25
    • 84863408489 scopus 로고    scopus 로고
    • Improving unsupervised dependency parsing with richer contexts and smoothing
    • W. P. Headden, III, M. Johnson, and D. McClosky. 2009. Improving unsupervised dependency parsing with richer contexts and smoothing. In NAACL-HLT.
    • (2009) NAACL-HLT
    • Headden III, W.P.1    Johnson, M.2    McClosky, D.3
  • 26
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6.
    • (1979) Scandinavian Journal of Statistics , vol.6
    • Holm, S.1
  • 27
    • 33846563409 scopus 로고    scopus 로고
    • Why most published research findings are false
    • J. P. A. Ioannidis. 2005. Why most published research findings are false. PLoS Medicine, 2.
    • (2005) PLoS Medicine , vol.2
    • Ioannidis, J.P.A.1
  • 29
    • 0042374750 scopus 로고    scopus 로고
    • An information-theoretic analysis of hard and soft assignment methods for clustering
    • M. Kearns, Y. Mansour, and A. Y. Ng. 1997. An information-theoretic analysis of hard and soft assignment methods for clustering. In UAI.
    • (1997) UAI
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3
  • 30
    • 34547991476 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • D. Klein and C. D. Manning. 2004. Corpus-based induction of syntactic structure: Models of dependency and constituency. In ACL.
    • (2004) ACL
    • Klein, D.1    Manning, C.D.2
  • 32
    • 0007318509 scopus 로고
    • The shrinkage of the coefficient of multiple correlation
    • S. C. Larson. 1931. The shrinkage of the coefficient of multiple correlation. Journal of Educational Psychology, 22.
    • (1931) Journal of Educational Psychology , vol.22
    • Larson, S.C.1
  • 33
    • 84859910906 scopus 로고    scopus 로고
    • Analyzing the errors of unsupervised learning
    • P. Liang and D. Klein. 2008. Analyzing the errors of unsupervised learning. In HLT-ACL.
    • (2008) HLT-ACL
    • Liang, P.1    Klein, D.2
  • 34
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. Liu and J. Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Mathematical Programming. Series B, 45.
    • (1989) Mathematical Programming. Series B , vol.45
    • Liu, D.C.1    Nocedal, J.2
  • 36
    • 0001050714 scopus 로고
    • An iterative technique for the rectification of observed distributions
    • L. B. Lucy. 1974. An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79.
    • (1974) The Astronomical Journal , vol.79
    • Lucy, L.B.1
  • 38
    • 80053277868 scopus 로고    scopus 로고
    • EM and MCMC: Workhorses for scientific computing (thirty years of EM and much more)
    • X.-L. Meng. 2007. EM and MCMC: Workhorses for scientific computing (thirty years of EM and much more). Statistica Sinica, 17.
    • (2007) Statistica Sinica , vol.17
    • Meng, X.-L.1
  • 39
    • 84867119745 scopus 로고
    • Tagging English text with a probabilistic model
    • B. Merialdo. 1994. Tagging English text with a probabilistic model. Computational Linguistics, 20.
    • (1994) Computational Linguistics , vol.20
    • Merialdo, B.1
  • 41
    • 80053437415 scopus 로고    scopus 로고
    • Learning probabilistic synchronous CFGs for phrase-based translation
    • M. Mylonakis and K. Sima'an. 2010. Learning probabilistic synchronous CFGs for phrase-based translation. In CoNLL.
    • (2010) CoNLL
    • Mylonakis, M.1    Sima'an, K.2
  • 42
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor MIT Press
    • R. M. Neal and G. E. Hinton. 1999. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models. MIT Press.
    • (1999) Learning in Graphical Models
    • Neal, R.M.1    Hinton, G.E.2
  • 43
    • 85094067550 scopus 로고    scopus 로고
    • Weakly supervised natural language learning without redundant views
    • V. Ng and C. Cardie. 2003. Weakly supervised natural language learning without redundant views. In HLT-NA ACL.
    • (2003) HLT-NA ACL
    • Ng, V.1    Cardie, C.2
  • 44
    • 85136905861 scopus 로고    scopus 로고
    • Analyzing the effectiveness and applicability of co-training
    • K. Nigam and R. Ghani. 2000. Analyzing the effectiveness and applicability of co-training. In CIKM.
    • (2000) CIKM
    • Nigam, K.1    Ghani, R.2
  • 46
    • 52149102347 scopus 로고    scopus 로고
    • Grammatical bigrams
    • M. A. Paskin. 2001. Grammatical bigrams. In NIPS.
    • (2001) NIPS
    • Paskin, M.A.1
  • 47
    • 85059598488 scopus 로고
    • Inside-outside reestimation from partially bracketed corpora
    • F. Pereira and Y. Schabes. 1992. Inside-outside reestimation from partially bracketed corpora. In ACL.
    • (1992) ACL
    • Pereira, F.1    Schabes, Y.2
  • 49
    • 84859916726 scopus 로고    scopus 로고
    • Minimized models for un-supervised part-of-speech tagging
    • S. Ravi and K. Knight. 2009. Minimized models for un-supervised part-of-speech tagging. In ACL-IJCNLP.
    • (2009) ACL-IJCNLP
    • Ravi, S.1    Knight, K.2
  • 50
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression and related optmization problems
    • K. Rose. 1998. Deterministic annealing for clustering, compression, classification, regression and related optmization problems. Proceedings of the IEEE, 86.
    • (1998) Proceedings of the IEEE , vol.86
    • Rose, K.1
  • 51
    • 78649271543 scopus 로고    scopus 로고
    • Applying co-training methods to statistical parsing
    • A. Sarkar. 2001. Applying co-training methods to statistical parsing. In NAACL.
    • (2001) NAACL
    • Sarkar, A.1
  • 52
    • 80053236417 scopus 로고    scopus 로고
    • Neutralizing linguistically problematic annotations in unsupervised dependency parsing evaluation
    • R. Schwartz, O. Abend, R. Reichart, and A. Rappoport. 2011. Neutralizing linguistically problematic annotations in unsupervised dependency parsing evaluation. In ACL.
    • (2011) ACL
    • Schwartz, R.1    Abend, O.2    Reichart, R.3    Rappoport, A.4
  • 53
    • 85149124789 scopus 로고    scopus 로고
    • Annealing techniques for unsupervised statistical language learning
    • N. A. Smith and J. Eisner. 2004. Annealing techniques for unsupervised statistical language learning. In ACL.
    • (2004) ACL
    • Smith, N.A.1    Eisner, J.2
  • 54
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • N. A. Smith and J. Eisner. 2005a. Contrastive estimation: Training log-linear models on unlabeled data. In ACL.
    • (2005) ACL
    • Smith, N.A.1    Eisner, J.2
  • 56
    • 80053400050 scopus 로고    scopus 로고
    • Semi-supervised dependency parsing using generalized tri-training
    • A. Søgaard and C. Rishøj. 2010. Semi-supervised dependency parsing using generalized tri-training. In COLING.
    • (2010) COLING
    • Søgaard, A.1    Rishøj, C.2
  • 59
    • 84859941983 scopus 로고    scopus 로고
    • Profiting from mark-up: Hyper-text annotations for guided parsing
    • V. I. Spitkovsky, D. Jurafsky, and H. Alshawi. 2010b. Profiting from mark-up: Hyper-text annotations for guided parsing. In ACL.
    • (2010) ACL
    • Spitkovsky, V.I.1    Jurafsky, D.2    Alshawi, H.3
  • 61
    • 80053250358 scopus 로고    scopus 로고
    • Multilevel structured models for document-level sentiment classification
    • A. Yessenalina, Y. Yue, and C. Cardie. 2010. Multilevel structured models for document-level sentiment classification. In EMNLP.
    • (2010) EMNLP
    • Yessenalina, A.1    Yue, Y.2    Cardie, C.3
  • 62
    • 16244378563 scopus 로고    scopus 로고
    • Democratic co-learning
    • Y. Zhou and S. Goldman. 2004. Democratic co-learning. In ICTAI.
    • (2004) ICTAI
    • Zhou, Y.1    Goldman, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.