메뉴 건너뛰기




Volumn , Issue , 2007, Pages 69-72

Applying novel resampling strategies to software defect prediction

Author keywords

[No Author keywords available]

Indexed keywords

DATA STRUCTURES; GEOMETRY; LEARNING SYSTEMS; PROBLEM SOLVING; SAMPLING;

EID: 35148838577     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/NAFIPS.2007.383813     Document Type: Conference Paper
Times cited : (132)

References (28)
  • 2
    • 35148839356 scopus 로고    scopus 로고
    • Let's Stop Wasting $78 Billion per Year
    • October 15
    • J. Johnson, "Let's Stop Wasting $78 Billion per Year," CIO Magazine, October 15, 2001 2001.
    • (2001) CIO Magazine
    • Johnson, J.1
  • 3
    • 0030194137 scopus 로고    scopus 로고
    • Industrial-strength management strategies
    • July
    • N. Brown, "Industrial-strength management strategies," IEEE Software, vol. 13, pp. 94-103, July 1996.
    • (1996) IEEE Software , vol.13 , pp. 94-103
    • Brown, N.1
  • 7
    • 1442356040 scopus 로고    scopus 로고
    • A Multiple Resampling Method for Learning from Imbalanced Datasets
    • A. Estrabooks, T. Jo, and N. Japkowicz, "A Multiple Resampling Method for Learning from Imbalanced Datasets," Computational Intelligence, vol. 20, 2004.
    • (2004) Computational Intelligence , vol.20
    • Estrabooks, A.1    Jo, T.2    Japkowicz, N.3
  • 9
    • 27144531570 scopus 로고    scopus 로고
    • A study of the Behavior of Several Methods for Balancing Machine Learning Training Data
    • G. Batista, R. Prati, and M. C. Monard, "A study of the Behavior of Several Methods for Balancing Machine Learning Training Data," Sigkdd Explorations, vol. 6, pp. 20-29.
    • Sigkdd Explorations , vol.6 , pp. 20-29
    • Batista, G.1    Prati, R.2    Monard, M.C.3
  • 10
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. Weiss and F. Provost, "Learning when training data are costly: The effect of class distribution on tree induction," Journal of Artificial Intelligence Research, vol. 19, pp. 315 - 354, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2
  • 12
    • 0000865580 scopus 로고
    • Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm
    • P. D. Turney, "Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm," Journal of Artificial Intelligence Research 2, pp. 369-409,1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 13
    • 84957062500 scopus 로고    scopus 로고
    • Boosting trees for cost-sensitive classifications
    • Chemnitz, Germany
    • K. M. Ting and Z. Zheng, "Boosting trees for cost-sensitive classifications," in Proc. 10th European Conf. on Machine Learning, Chemnitz, Germany, 1998, pp. 191-195.
    • (1998) Proc. 10th European Conf. on Machine Learning , pp. 191-195
    • Ting, K.M.1    Zheng, Z.2
  • 15
    • 0017291489 scopus 로고
    • A Complexity Measure
    • T. J. McCabe, "A Complexity Measure," IEEE Trans. Software Eng, vol. 2, pp. 308 - 320, 1976.
    • (1976) IEEE Trans. Software Eng , vol.2 , pp. 308-320
    • McCabe, T.J.1
  • 18
    • 0033346610 scopus 로고    scopus 로고
    • A Critique of Software Defect Prediction Models
    • September/October
    • N. E. Fenton and M. Neil, "A Critique of Software Defect Prediction Models," IEEE Transactions on Software Engineering, vol. 25, September/October 1999, 675-689.
    • (1999) IEEE Transactions on Software Engineering , vol.25 , pp. 675-689
    • Fenton, N.E.1    Neil, M.2
  • 19
    • 0001155168 scopus 로고
    • An Example of Software System Debugging
    • F. Akiyama, "An Example of Software System Debugging," Information Processing, vol. 71, pp. 353-379, 1971.
    • (1971) Information Processing , vol.71 , pp. 353-379
    • Akiyama, F.1
  • 20
    • 84952399638 scopus 로고
    • A Theory of System Complexity
    • A. E. Ferdinand, "A Theory of System Complexity," Int'l J. General Systems, vol. 1, pp. 19-33, 1974.
    • (1974) Int'l J. General Systems , vol.1 , pp. 19-33
    • Ferdinand, A.E.1
  • 24
    • 35148891519 scopus 로고    scopus 로고
    • Computational Intelligence in Software Quality Assurance
    • M. Last, A. Kandel, Eds, World Scientific Press
    • S. Dick and A. Kandel, "Computational Intelligence in Software Quality Assurance," M. Last, A. Kandel, Eds., Artificial Intelligence Methods in Software Testing, World Scientific Press 2004.
    • (2004) Artificial Intelligence Methods in Software Testing
    • Dick, S.1    Kandel, A.2
  • 25
    • 0031998121 scopus 로고    scopus 로고
    • Machine Learning for the Detection of Oil Spills in Satellite Radar Images
    • M. Kubat, R. Holte, and S. Matwin, "Machine Learning for the Detection of Oil Spills in Satellite Radar Images," Machine Learning, vol. 30, pp. 195-215, 1997.
    • (1997) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 26
    • 0038096718 scopus 로고    scopus 로고
    • Neural networks for software reliability engineering
    • M.R. Lyu, Ed, New York: McGraw-hill
    • N. Karunanithi, Y.K. Malaiya, "Neural networks for software reliability engineering," in M.R. Lyu, Ed., Handbook of Software Reliability Engineering, New York: McGraw-hill, 1996, pp. 699-728.
    • (1996) Handbook of Software Reliability Engineering , pp. 699-728
    • Karunanithi, N.1    Malaiya, Y.K.2
  • 27
    • 40649091855 scopus 로고    scopus 로고
    • Fuzzy Clustering of Open-Source Software Quality Data: A Case Study of Mozilla
    • Vancouver, BC, Canada, pp
    • S. Dick, A. Sadia, " Fuzzy Clustering of Open-Source Software Quality Data: A Case Study of Mozilla," in Proceedings of IJCNN 2006, Vancouver, BC, Canada, pp. 4089-4096.
    • Proceedings of IJCNN 2006 , pp. 4089-4096
    • Dick, S.1    Sadia, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.