메뉴 건너뛰기




Volumn , Issue , 2015, Pages 534-541

Deeply-learned feature for age estimation

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTIONAL NEURAL NETWORKS; DEEP LEARNING; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 84925446542     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2015.77     Document Type: Conference Paper
Times cited : (214)

References (51)
  • 1
    • 84925410589 scopus 로고    scopus 로고
    • The fg-net aging database http://www.fgnet. rsunit.com/.
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. Burges. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2):121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 6
    • 33750378734 scopus 로고    scopus 로고
    • Orthogonal laplacianfaces for face recognition
    • D. Cai, X. He, J. Han, and H.-J. Zhang. Orthogonal laplacianfaces for face recognition. TIP, 15(11):3608-3614, 2006.
    • (2006) TIP , vol.15 , Issue.11 , pp. 3608-3614
    • Cai, D.1    He, X.2    Han, J.3    Zhang, H.-J.4
  • 7
    • 84880899766 scopus 로고    scopus 로고
    • Locality sensitive discriminant analysis
    • D. Cai, X. He, K. Zhou, J. Han, and H. Bao. Locality sensitive discriminant analysis. In IJCAI, pages 708-713, 2007.
    • (2007) IJCAI , pp. 708-713
    • Cai, D.1    He, X.2    Zhou, K.3    Han, J.4    Bao, H.5
  • 8
    • 84898773212 scopus 로고    scopus 로고
    • Stacked predictive sparse coding for classification of distinct regions in tumor histopathology
    • H. Chang, Y. Zhou, P. Spellman, and B. Parvin. Stacked predictive sparse coding for classification of distinct regions in tumor histopathology. In ICCV, pages 169-176, 2013.
    • (2013) ICCV , pp. 169-176
    • Chang, H.1    Zhou, Y.2    Spellman, P.3    Parvin, B.4
  • 9
    • 80052902591 scopus 로고    scopus 로고
    • Ordinal hyperplanes ranker with cost sensitivities for age estimation
    • K.-Y. Chang, C.-S. Chen, and Y.-P. Hung. Ordinal hyperplanes ranker with cost sensitivities for age estimation. In CVPR, pages 585-592, 2011.
    • (2011) CVPR , pp. 585-592
    • Chang, K.-Y.1    Chen, C.-S.2    Hung, Y.-P.3
  • 10
    • 84887355589 scopus 로고    scopus 로고
    • Cumulative attribute space for age and crowd density estimation
    • K. Chen, S. Gong, T. Xiang, and C. C. Loy. Cumulative attribute space for age and crowd density estimation. In CVPR, pages 2467-2474, 2013.
    • (2013) CVPR , pp. 2467-2474
    • Chen, K.1    Gong, S.2    Xiang, T.3    Loy, C.C.4
  • 12
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. PAMI, 35(8):1915-1929, 2013.
    • (2013) PAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    Lecun, Y.4
  • 14
    • 44049107671 scopus 로고    scopus 로고
    • Human age estimation with regression on discriminative aging manifold
    • Y. Fu and T. S. Huang. Human age estimation with regression on discriminative aging manifold. IEEE Transactions on Multimedia, 10(4):578-584, 2008.
    • (2008) IEEE Transactions on Multimedia , vol.10 , Issue.4 , pp. 578-584
    • Fu, Y.1    Huang, T.S.2
  • 15
    • 36248946626 scopus 로고    scopus 로고
    • Automatic age estimation based on facial aging patterns
    • X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age estimation based on facial aging patterns. PAMI, 29(12):2234-2240, 2007.
    • (2007) PAMI , vol.29 , Issue.12 , pp. 2234-2240
    • Geng, X.1    Zhou, Z.-H.2    Smith-Miles, K.3
  • 16
    • 34547196758 scopus 로고    scopus 로고
    • Learning from facial aging patterns for automatic age estimation
    • X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai. Learning from facial aging patterns for automatic age estimation. In MM, pages 307-316, 2006.
    • (2006) MM , pp. 307-316
    • Geng, X.1    Zhou, Z.-H.2    Zhang, Y.3    Li, G.4    Dai, H.5
  • 17
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 45949109037 scopus 로고    scopus 로고
    • Image-based human age estimation by manifold learning and locally adjusted robust regression
    • G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang. Image-based human age estimation by manifold learning and locally adjusted robust regression. TIP, 17(7):1178-1188, 2008.
    • (2008) TIP , vol.17 , Issue.7 , pp. 1178-1188
    • Guo, G.1    Fu, Y.2    Dyer, C.R.3    Huang, T.S.4
  • 19
    • 84925441951 scopus 로고    scopus 로고
    • Locally adjusted robust regression for human age estimation
    • G. Guo, Y. Fu, T. S. Huang, and C. R. Dyer. Locally adjusted robust regression for human age estimation. Urbana, 51:61801, 2008.
    • (2008) Urbana , vol.51 , pp. 61801
    • Guo, G.1    Fu, Y.2    Huang, T.S.3    Dyer, C.R.4
  • 20
    • 77956516591 scopus 로고    scopus 로고
    • Human age estimation: What is the influence across race and gender?
    • IEEE
    • G. Guo and G. Mu. Human age estimation: What is the influence across race and gender? In CVPRW, pages 71-78. IEEE, 2010.
    • (2010) CVPRW , pp. 71-78
    • Guo, G.1    Mu, G.2
  • 21
    • 80052873888 scopus 로고    scopus 로고
    • Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression
    • G. Guo and G. Mu. Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In CVPR, pages 657-664, 2011.
    • (2011) CVPR , pp. 657-664
    • Guo, G.1    Mu, G.2
  • 22
    • 84906785765 scopus 로고    scopus 로고
    • A framework for joint estimation of age, gender and ethnicity on a large database
    • G. Guo and G. Mu. A framework for joint estimation of age, gender and ethnicity on a large database. Image and Vision Computing, 2014.
    • (2014) Image and Vision Computing
    • Guo, G.1    Mu, G.2
  • 23
    • 70450194783 scopus 로고    scopus 로고
    • Human age estimation using bio-inspired features
    • G. Guo, G. Mu, Y. Fu, and T. S. Huang. Human age estimation using bio-inspired features. In CVPR, pages 112-119, 2009.
    • (2009) CVPR , pp. 112-119
    • Guo, G.1    Mu, G.2    Fu, Y.3    Huang, T.S.4
  • 25
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 26
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 27
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, pages 2146-2153, 2009.
    • (2009) ICCV , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Lecun, Y.4
  • 29
    • 0028134349 scopus 로고
    • Age classification from facial images
    • Y. H. Kwon and N. da Vitoria Lobo. Age classification from facial images. In CVPR, pages 762-767, 1994.
    • (1994) CVPR , pp. 762-767
    • Kwon, Y.H.1    Da Vitoria Lobo, N.2
  • 31
    • 0036537914 scopus 로고    scopus 로고
    • Toward automatic simulation of aging effects on face images
    • A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic simulation of aging effects on face images. PAMI, 24(4):442-455, 2002.
    • (2002) PAMI , vol.24 , Issue.4 , pp. 442-455
    • Lanitis, A.1    Taylor, C.J.2    Cootes, T.F.3
  • 33
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, volume 2, pages II-97, 2004.
    • (2004) CVPR , vol.2 , pp. II-97
    • Lecun, Y.1    Huang, F.J.2    Bottou, L.3
  • 35
    • 84866684903 scopus 로고    scopus 로고
    • Learning ordinal discriminative features for age estimation
    • C. Li, Q. Liu, J. Liu, and H. Lu. Learning ordinal discriminative features for age estimation. In CVPR, pages 2570-2577, 2012.
    • (2012) CVPR , pp. 2570-2577
    • Li, C.1    Liu, Q.2    Liu, J.3    Lu, H.4
  • 37
    • 33845578024 scopus 로고    scopus 로고
    • Modeling age progression in young faces
    • N. Ramanathan and R. Chellappa. Modeling age progression in young faces. In CVPR, volume 1, pages 387-394, 2006.
    • (2006) CVPR , vol.1 , pp. 387-394
    • Ramanathan, N.1    Chellappa, R.2
  • 38
    • 84908537903 scopus 로고    scopus 로고
    • Cnn features off-the-shelf: An astounding baseline for recognition
    • A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an astounding baseline for recognition. CVPRW, 2014.
    • (2014) CVPRW
    • Razavian, A.S.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 39
    • 33750826722 scopus 로고    scopus 로고
    • Morph: A longitudinal image database of normal adult age-progression
    • K. Ricanek and T. Tesafaye. Morph: A longitudinal image database of normal adult age-progression. In FG, pages 341-345, 2006.
    • (2006) FG , pp. 341-345
    • Ricanek, K.1    Tesafaye, T.2
  • 40
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature neuroscience, 2(11):1019-1025, 1999.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 43
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and computing, 14(3):199-222, 2004.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 45
    • 84899433742 scopus 로고    scopus 로고
    • Can we minimize the influence due to gender and race in age estimation?
    • X. Wang, V. Ly, G. Lu, and C. Kambhamettu. Can we minimize the influence due to gender and race in age estimation? In ICMLA, volume 2, pages 309-314, 2013.
    • (2013) ICMLA , vol.2 , pp. 309-314
    • Wang, X.1    Ly, V.2    Lu, G.3    Kambhamettu, C.4
  • 47
    • 50649098885 scopus 로고    scopus 로고
    • Learning autostructured regressor from uncertain nonnegative labels
    • S. Yan, H. Wang, X. Tang, and T. S. Huang. Learning autostructured regressor from uncertain nonnegative labels. In ICCV, pages 1-8, 2007.
    • (2007) ICCV , pp. 1-8
    • Yan, S.1    Wang, H.2    Tang, X.3    Huang, T.S.4
  • 48
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph embedding and extensions: a general framework for dimensionality reduction. PAMI, 29(1):40-51, 2007.
    • (2007) PAMI , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.-J.4    Yang, Q.5    Lin, S.6
  • 50
    • 77955999539 scopus 로고    scopus 로고
    • Multi-task warped gaussian process for personalized age estimation
    • Y. Zhang and D.-Y. Yeung. Multi-task warped gaussian process for personalized age estimation. In CVPR, pages 2622-2629, 2010.
    • (2010) CVPR , pp. 2622-2629
    • Zhang, Y.1    Yeung, D.-Y.2
  • 51
    • 84911451297 scopus 로고    scopus 로고
    • Classification of histology sections via multispectral convolutional sparse coding
    • Y. Zhou, H. Chang, K. Barner, P. Spellman, and B. Parvin. Classification of histology sections via multispectral convolutional sparse coding. In CVPR, 2014.
    • (2014) CVPR
    • Zhou, Y.1    Chang, H.2    Barner, K.3    Spellman, P.4    Parvin, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.