메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2622-2629

Multi-task warped Gaussian process for personalized age estimation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; ESTIMATION; GAUSSIAN NOISE (ELECTRONIC); REGRESSION ANALYSIS;

EID: 77955999539     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539975     Document Type: Conference Paper
Times cited : (199)

References (32)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 2008.
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 2008.
  • 2
    • 0031187873 scopus 로고    scopus 로고
    • J. Baxter. A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, 1997.
    • J. Baxter. A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, 1997.
  • 3
    • 0031189914 scopus 로고    scopus 로고
    • R. Caruana. Multitask learning. Machine Learning, 1997.
    • R. Caruana. Multitask learning. Machine Learning, 1997.
  • 4
    • 0035363218 scopus 로고    scopus 로고
    • T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. TPAMI, 2001.
    • T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. TPAMI, 2001.
  • 5
    • 44049107671 scopus 로고    scopus 로고
    • Y. Fu and T. S. Huang. Human age estimation with regression on discriminative aging manifold. TMM, 2008.
    • Y. Fu and T. S. Huang. Human age estimation with regression on discriminative aging manifold. TMM, 2008.
  • 6
    • 85060508704 scopus 로고    scopus 로고
    • A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. 2003.
    • A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. 2003.
  • 7
    • 70349210359 scopus 로고    scopus 로고
    • X. Geng and K. Smith-Miles. Facial age estimation by multilinear subspace analysis. In ICASSP, 2009.
    • X. Geng and K. Smith-Miles. Facial age estimation by multilinear subspace analysis. In ICASSP, 2009.
  • 8
    • 85060508104 scopus 로고    scopus 로고
    • X. Geng, K. Smith-Miles, and Z.-H. Zhou. Facial age estimation by nonlinear aging pattern subspace. In ACMMM, 2008.
    • X. Geng, K. Smith-Miles, and Z.-H. Zhou. Facial age estimation by nonlinear aging pattern subspace. In ACMMM, 2008.
  • 9
    • 36248946626 scopus 로고    scopus 로고
    • X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age estimation based on facial aging patterns. TPAMI, 2007.
    • X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age estimation based on facial aging patterns. TPAMI, 2007.
  • 10
    • 34547196758 scopus 로고    scopus 로고
    • X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai. Learning from facial aging patterns for automatic age estimation. In ACMMM, 2006.
    • X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai. Learning from facial aging patterns for automatic age estimation. In ACMMM, 2006.
  • 11
    • 45949109037 scopus 로고    scopus 로고
    • G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang. Image-based human age estimation by manifold learning and locally adjusted robust regression. TIP, 2008.
    • G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang. Image-based human age estimation by manifold learning and locally adjusted robust regression. TIP, 2008.
  • 12
    • 77953227243 scopus 로고    scopus 로고
    • G. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang. A study on automatic age estimation using a large database. In ICCV, 2009.
    • G. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang. A study on automatic age estimation using a large database. In ICCV, 2009.
  • 13
    • 85117427244 scopus 로고    scopus 로고
    • G. Guo, G. Mu, Y. Fu, and T. S. Huang. Human age estimation using bio-inspired features. In CVPR, 2009.
    • G. Guo, G. Mu, Y. Fu, and T. S. Huang. Human age estimation using bio-inspired features. In CVPR, 2009.
  • 14
    • 85060509463 scopus 로고    scopus 로고
    • I. T. Jolliffe. Principal Component Analysis. 2002.
    • I. T. Jolliffe. Principal Component Analysis. 2002.
  • 15
    • 33750826722 scopus 로고    scopus 로고
    • K. R. Jr. and T. Tesafaye. MORPH: A longitudinal image database of normal adult age-progression. In AFGR, 2006.
    • K. R. Jr. and T. Tesafaye. MORPH: A longitudinal image database of normal adult age-progression. In AFGR, 2006.
  • 16
    • 0032679590 scopus 로고    scopus 로고
    • Y. H. Kwon and N. V. Lobo. Age classification from facial images. CVIU, 1999.
    • Y. H. Kwon and N. V. Lobo. Age classification from facial images. CVIU, 1999.
  • 17
    • 0742290014 scopus 로고    scopus 로고
    • A. Lanitis, C. Draganova, and C. Christodoulou. Comparing different classifiers for automatic age estimation. TSMC-Part B, 2004.
    • A. Lanitis, C. Draganova, and C. Christodoulou. Comparing different classifiers for automatic age estimation. TSMC-Part B, 2004.
  • 18
    • 0036537914 scopus 로고    scopus 로고
    • A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic simulation of aging effects on face images. TPAMI, 2002.
    • A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic simulation of aging effects on face images. TPAMI, 2002.
  • 19
    • 14344249890 scopus 로고    scopus 로고
    • N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In ICML, 2004.
    • N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In ICML, 2004.
  • 20
    • 80053225881 scopus 로고    scopus 로고
    • N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In NIPS 15, 2003.
    • N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In NIPS 15, 2003.
  • 21
    • 50949126516 scopus 로고    scopus 로고
    • H. Ling, S. Soatto, N. Ramanathan, and D. W. Jacobs. A study of face recognition as people age. In ICCV, 2007.
    • H. Ling, S. Soatto, N. Ramanathan, and D. W. Jacobs. A study of face recognition as people age. In ICCV, 2007.
  • 22
    • 33750330950 scopus 로고    scopus 로고
    • N. Ramanathan and R. Chellappa. Face verification across age progression. TIP, 2006.
    • N. Ramanathan and R. Chellappa. Face verification across age progression. TIP, 2006.
  • 23
    • 33845578024 scopus 로고    scopus 로고
    • N. Ramanathan and R. Chellappa. Modeling age progression in young faces. In CVPR, 2006.
    • N. Ramanathan and R. Chellappa. Modeling age progression in young faces. In CVPR, 2006.
  • 24
    • 20444440697 scopus 로고    scopus 로고
    • N. Ramanathan, R. Chellappa, and A. K. R. Chowdhury. Facial similarity across age, disguise, illumination and pose. In ICIP, 2004.
    • N. Ramanathan, R. Chellappa, and A. K. R. Chowdhury. Facial similarity across age, disguise, illumination and pose. In ICIP, 2004.
  • 25
    • 85060509278 scopus 로고    scopus 로고
    • C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. 2006.
    • C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. 2006.
  • 26
    • 84898943255 scopus 로고    scopus 로고
    • E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian processes. In NIPS 16, 2004.
    • E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian processes. In NIPS 16, 2004.
  • 27
    • 77249109238 scopus 로고    scopus 로고
    • J. Suo, X. Chen, S. Shan, and W. Gao. Learning long term face aging patterns from partially dense aging databases. In ICCV, 2009.
    • J. Suo, X. Chen, S. Shan, and W. Gao. Learning long term face aging patterns from partially dense aging databases. In ICCV, 2009.
  • 28
    • 85060508888 scopus 로고    scopus 로고
    • S. Thrun. Is learning the n-th thing any easier than learning the first? In NIPS 8, 1996.
    • S. Thrun. Is learning the n-th thing any easier than learning the first? In NIPS 8, 1996.
  • 29
    • 72449148708 scopus 로고    scopus 로고
    • B. Xiao, X. Yang, Y. Xu, and H. Zha. Learning distance metric for regression by semidefinite programming with application to human age estimation. In ACMMM, 2009.
    • B. Xiao, X. Yang, Y. Xu, and H. Zha. Learning distance metric for regression by semidefinite programming with application to human age estimation. In ACMMM, 2009.
  • 30
    • 85060508851 scopus 로고    scopus 로고
    • S. Yan, H. Wang, T. S. Huang, Q. Yang, and X. Tang. Ranking with uncertain labels. In ICME, 2007.
    • S. Yan, H. Wang, T. S. Huang, Q. Yang, and X. Tang. Ranking with uncertain labels. In ICME, 2007.
  • 31
    • 50649098885 scopus 로고    scopus 로고
    • S. Yan, H. Wang, X. Tang, and T. S. Huang. Learning autostructured regressor from uncertain nonnegative labels. In ICCV, 2007.
    • S. Yan, H. Wang, X. Tang, and T. S. Huang. Learning autostructured regressor from uncertain nonnegative labels. In ICCV, 2007.
  • 32
    • 51949114851 scopus 로고    scopus 로고
    • S. Yan, X. Zhou, M. Liu, M. Hasegawa-Johnson, and T. S. Huang. Regression from patch-kernel. In CVPR, 2008.
    • S. Yan, X. Zhou, M. Liu, M. Hasegawa-Johnson, and T. S. Huang. Regression from patch-kernel. In CVPR, 2008.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.