메뉴 건너뛰기




Volumn 16, Issue 2, 2015, Pages 216-231

A primer to frequent itemset mining for bioinformatics

Author keywords

Association rule; Biclustering; Frequent item set; Market basket analysis; Pattern mining

Indexed keywords

ALGORITHM; ANIMAL; AUTOMATED PATTERN RECOGNITION; BIOLOGY; CLUSTER ANALYSIS; DATA MINING; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; HIGH THROUGHPUT SEQUENCING; HUMAN; SINGLE NUCLEOTIDE POLYMORPHISM; SOFTWARE; STATISTICS AND NUMERICAL DATA;

EID: 84925392773     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbt074     Document Type: Article
Times cited : (97)

References (102)
  • 2
    • 33644656960 scopus 로고    scopus 로고
    • Integrated analysis of gene expression by association rules discovery
    • Carmona-Saez P, Chagoyen M, Rodriguez A, et al. Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics 2006;7:54.
    • (2006) BMC Bioinformatics , vol.7 , pp. 54
    • Carmona-Saez, P.1    Chagoyen, M.2    Rodriguez, A.3
  • 3
    • 84867416846 scopus 로고    scopus 로고
    • Cross-ontology multilevel association rule mining in the gene ontology
    • Manda P, Ozkan S, Wang H, et al. Cross-ontology multilevel association rule mining in the gene ontology. PLoS One 2012;7:e47411.
    • (2012) PLoS One , vol.7 , pp. e47411
    • Manda, P.1    Ozkan, S.2    Wang, H.3
  • 4
    • 33846194268 scopus 로고    scopus 로고
    • Detecting conserved interaction patterns in biological networks
    • Koyutürk M, Kim Y, Subramaniam S, et al. Detecting conserved interaction patterns in biological networks. J Comput Biol 2006;13:1299-322.
    • (2006) J Comput Biol , vol.13 , pp. 1299-1322
    • Koyutürk, M.1    Kim, Y.2    Subramaniam, S.3
  • 5
    • 84856466037 scopus 로고    scopus 로고
    • Subcellular localization prediction through boosting association rules
    • Yoon Y, Lee GG. Subcellular localization prediction through boosting association rules. IEEE/ACM Trans Comput Biol Bioinform 2012;9:609-18.
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , pp. 609-618
    • Yoon, Y.1    Lee, G.G.2
  • 6
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • Bocca JB, Jarke M, Zaniolo C (eds), Santiago: Morgan Kaufman
    • Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Bocca JB, Jarke M, Zaniolo C (eds). Proceedings of the 20th VLDB Conference. Santiago: Morgan Kaufman, 1994, 487-99.
    • (1994) Proceedings of the 20th VLDB Conference , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 7
    • 33749560305 scopus 로고    scopus 로고
    • Frequent Set Mining
    • Maimon O, Rokach L (eds), Heidelberg: Springer Berlin
    • Goethals B. Frequent Set Mining. In: Maimon O, Rokach L (eds). The Data Mining and Knowledge Discovery Handbook. Heidelberg: Springer Berlin, 2010, 321-38.
    • (2010) The Data Mining and Knowledge Discovery Handbook , pp. 321-338
    • Goethals, B.1
  • 8
    • 38349166288 scopus 로고    scopus 로고
    • Chapter 6. Association analysis: basic concepts and algorithms
    • Addison-Wesley: Boston
    • Tan P-N, Steinbach M, Kumar V. Chapter 6. Association analysis: basic concepts and algorithms. Introduction to Data Mining. Addison-Wesley: Boston, 2005, 769.
    • (2005) Introduction to Data Mining , pp. 769
    • Tan, P.-N.1    Steinbach, M.2    Kumar, V.3
  • 9
    • 34247340013 scopus 로고    scopus 로고
    • Mining positive and negative association rules: an approach for confined rules
    • Boulicaut JF, Esposito F, Giannotti F, Pedreschi D (eds)., Heidelberg:Springer Berlin
    • Antonie ML, Zai{dotless}ane OR. Mining positive and negative association rules: an approach for confined rules. In:Boulicaut JF, Esposito F, Giannotti F, Pedreschi D (eds). Knowledge Discovery in Databases: PKDD 2004. Heidelberg:Springer Berlin, 2004, 27-38.
    • (2004) Knowledge Discovery in Databases: PKDD 2004 , pp. 27-38
    • Antonie, M.L.1    Zaïane, O.R.2
  • 10
    • 79955766063 scopus 로고    scopus 로고
    • Generalizing itemset mining in a constraint programming setting
    • Džeroski S, Goethals B, Panov P (eds)., Heidelberg: Springer Berlin
    • Besson J, Boulicaut JF, Guns T, Nijssen S. Generalizing itemset mining in a constraint programming setting. In:Džeroski S, Goethals B, Panov P (eds). Inductive Databases and Constraint-Based Data Mining. Heidelberg: Springer Berlin, 2010, 107-26.
    • (2010) Inductive Databases and Constraint-Based Data Mining , pp. 107-126
    • Besson, J.1    Boulicaut, J.F.2    Guns, T.3    Nijssen, S.4
  • 12
    • 84876515907 scopus 로고    scopus 로고
    • STRING v9.1: protein-protein interaction networks, with increased coverage and integration
    • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2012;41:D808-15.
    • (2012) Nucleic Acids Res , vol.41 , pp. D808-D815
    • Franceschini, A.1    Szklarczyk, D.2    Frankild, S.3
  • 14
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: a frequent-pattern tree approach
    • Han J, Pei J, Yin Y, et al. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min KnowlDiscov 2004;8:53-87.
    • (2004) Data Min KnowlDiscov , vol.8 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 15
    • 28944442644 scopus 로고    scopus 로고
    • Mining sequence annotation databanks for association patterns
    • Artamonova II, Frishman G, Gelfand MS, et al. Mining sequence annotation databanks for association patterns. Bioinformatics 2005;21:iii49-57.
    • (2005) Bioinformatics , vol.21 , pp. 49-57
    • Artamonova, I.I.1    Frishman, G.2    Gelfand, M.S.3
  • 16
    • 84866925565 scopus 로고    scopus 로고
    • Analyzing large biological datasets with association networks
    • Karpinets TV, Park BH, Uberbacher EC. Analyzing large biological datasets with association networks. Nucleic Acids Res 2012;40:e131.
    • (2012) Nucleic Acids Res , vol.40 , pp. e131
    • Karpinets, T.V.1    Park, B.H.2    Uberbacher, E.C.3
  • 17
    • 78049408050 scopus 로고    scopus 로고
    • Discovering protein-DNA binding sequence patterns using association rule mining
    • Leung K-S, Wong K-C, Chan T-M, et al. Discovering protein-DNA binding sequence patterns using association rule mining. Nucleic Acids Res 2010;38:6324-37.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6324-6337
    • Leung, K.-S.1    Wong, K.-C.2    Chan, T.-M.3
  • 18
    • 84871261147 scopus 로고    scopus 로고
    • COPS: detecting cooccurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets
    • Ha N, Polychronidou M, Lohmann I. COPS: detecting cooccurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. PLoS One 2012;7:e52055.
    • (2012) PLoS One , vol.7 , pp. e52055
    • Ha, N.1    Polychronidou, M.2    Lohmann, I.3
  • 19
    • 34248393544 scopus 로고    scopus 로고
    • Finding association rules of cis-regulatory elements involved in alternative splicing
    • Winstom-Salem,NC,USA, New York: ACM
    • Kim J, Zhao S, Heber S. Finding association rules of cis-regulatory elements involved in alternative splicing. In:Proceedings of the 45th Annual Southeast Regional Conference, Winstom-Salem,NC,USA, 2007. New York: ACM, 232-37.
    • (2007) Proceedings of the 45th Annual Southeast Regional Conference , pp. 232-237
    • Kim, J.1    Zhao, S.2    Heber, S.3
  • 20
    • 84861665777 scopus 로고    scopus 로고
    • Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain
    • Tweedie-Cullen RY, Brunner AM, Grossmann J, et al. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 2012;7:e36980.
    • (2012) PLoS One , vol.7 , pp. e36980
    • Tweedie-Cullen, R.Y.1    Brunner, A.M.2    Grossmann, J.3
  • 21
    • 0141940269 scopus 로고    scopus 로고
    • Mining residue contacts in proteins using local structure predictions
    • Zaki MJ, Jin S, Bystroff C. Mining residue contacts in proteins using local structure predictions. Trans Sys Man Cyber Part B 2003;33:789-801.
    • (2003) Trans Sys Man Cyber Part B , vol.33 , pp. 789-801
    • Zaki, M.J.1    Jin, S.2    Bystroff, C.3
  • 22
    • 4544267274 scopus 로고    scopus 로고
    • Automatic protein structure classification through structural fingerprinting
    • Taichung, Taiwan, Washington, DC: IEEE Computer Society
    • Aung Z, Tan KL. Automatic protein structure classification through structural fingerprinting. In: Proceedings of the 4th IEEE symposium on Bioinformatics and Bioengeering (BIBE 2004), Taichung, Taiwan, 2004. Washington, DC: IEEE Computer Society, 508-15.
    • (2004) Proceedings of the 4th IEEE symposium on Bioinformatics and Bioengeering (BIBE 2004) , pp. 508-515
    • Aung, Z.1    Tan, K.L.2
  • 25
    • 84884193260 scopus 로고    scopus 로고
    • Prediction of peptides binding to MHC class I and II alleles by temporal motif mining
    • Meydan C, Out HH, Sezerman OU. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinformatics 2013;14(Suppl 2):S13.
    • (2013) BMC Bioinformatics , vol.14 , pp. S13
    • Meydan, C.1    Out, H.H.2    Sezerman, O.U.3
  • 26
    • 84879690753 scopus 로고    scopus 로고
    • A data-mining approach for multiple structural alignment of proteins
    • Siu WY, Mamoulis N, Yiu SM, Chan HL. A data-mining approach for multiple structural alignment of proteins. Bioinformation 2011;4:366-70.
    • (2011) Bioinformation , vol.4 , pp. 366-370
    • Siu, W.Y.1    Mamoulis, N.2    Yiu, S.M.3    Chan, H.L.4
  • 27
    • 41549125857 scopus 로고    scopus 로고
    • Fuzzy association rules for biological data analysis: a case study on yeast
    • Lopez FJ, Blanco A, Garcia F, et al. Fuzzy association rules for biological data analysis: a case study on yeast. BMC Bioinformatics 2008;9:107.
    • (2008) BMC Bioinformatics , vol.9 , pp. 107
    • Lopez, F.J.1    Blanco, A.2    Garcia, F.3
  • 28
    • 77950925363 scopus 로고    scopus 로고
    • Gene association analysis: a survey of frequent pattern mining from gene expression data
    • Alves R, Rodriguez-Baena DS, Aguilar-Ruiz JS. Gene association analysis: a survey of frequent pattern mining from gene expression data. Brief Bioinform 2010;11:210-24.
    • (2010) Brief Bioinform , vol.11 , pp. 210-224
    • Alves, R.1    Rodriguez-Baena, D.S.2    Aguilar-Ruiz, J.S.3
  • 29
    • 79959423582 scopus 로고    scopus 로고
    • DeBi: Discovering differentially expressed biclusters using a frequent itemset approach
    • Serin A, Vingron M. DeBi: Discovering differentially expressed biclusters using a frequent itemset approach. AlgorithmsMol Biol 2011;6:18.
    • (2011) AlgorithmsMol Biol , vol.6 , pp. 18
    • Serin, A.1    Vingron, M.2
  • 30
    • 84859945790 scopus 로고    scopus 로고
    • A novel biclustering approach to association rule mining for predicting HIV-1-human protein interactions
    • Mukhopadhyay A, Maulik U, Bandyopadhyay S. A novel biclustering approach to association rule mining for predicting HIV-1-human protein interactions. PLoS One 2013;7:e32289.
    • (2013) PLoS One , vol.7 , pp. e32289
    • Mukhopadhyay, A.1    Maulik, U.2    Bandyopadhyay, S.3
  • 31
    • 79961012403 scopus 로고    scopus 로고
    • Unraveling tobacco BY-2 protein complexes with BN PAGE/LCMS/MS and clustering methods
    • Remmerie N, de Vijlder T, Valkenborg D, et al. Unraveling tobacco BY-2 protein complexes with BN PAGE/LCMS/MS and clustering methods. J Proteomics 2011;74:1201-17.
    • (2011) J Proteomics , vol.74 , pp. 1201-1217
    • Remmerie, N.1    de Vijlder, T.2    Valkenborg, D.3
  • 32
    • 0038313118 scopus 로고    scopus 로고
    • Strong-associationrule mining for large-scale gene-expression data analysis: a case study on human SAGE data
    • research
    • Becquet C, Blachon S, Jeudy B, et al. Strong-associationrule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 2002;3:research0067.
    • (2002) Genome Biol , vol.3 , pp. 0067
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3
  • 33
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • Creighton C, Hanash S. Mining gene expression databases for association rules. Bioinformatics 2003;19:79-86.
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 36
    • 27944443169 scopus 로고    scopus 로고
    • GenMax: an efficient algorithm for mining maximal frequent itemsets
    • Gouda K, Zaki MJ. GenMax: an efficient algorithm for mining maximal frequent itemsets. Data Min Knowl Discov 2005;11:223-42.
    • (2005) Data Min Knowl Discov , vol.11 , pp. 223-242
    • Gouda, K.1    Zaki, M.J.2
  • 37
    • 77955319589 scopus 로고    scopus 로고
    • Kernel based gene expression pattern discovery and its application on cancer classification
    • Cai R, Hao Z, Wen W, et al. Kernel based gene expression pattern discovery and its application on cancer classification. Neurocomputing 2010;73:2562-70.
    • (2010) Neurocomputing , vol.73 , pp. 2562-2570
    • Cai, R.1    Hao, Z.2    Wen, W.3
  • 38
    • 27544508838 scopus 로고    scopus 로고
    • Analyzing microarray data using quantitative association rules
    • Georgii E, Richter L, Rückert U, et al. Analyzing microarray data using quantitative association rules. Bioinformatics 2005;11:123-9.
    • (2005) Bioinformatics , vol.11 , pp. 123-129
    • Georgii, E.1    Richter, L.2    Rückert, U.3
  • 42
    • 33749592722 scopus 로고    scopus 로고
    • Top-Down Mining of Interesting Patterns from Very High Dimensional Data
    • Long Beach, California, USA, Washington, DC: IEEE Computer Society
    • Liu H, Han J, Xin D, et al. Top-Down Mining of Interesting Patterns from Very High Dimensional Data. In: Proceedings of the 22nd international conference on Data Engineering, Long Beach, California, USA, 2006. Washington, DC: IEEE Computer Society, 114.
    • (2006) Proceedings of the 22nd international conference on Data Engineering , pp. 114
    • Liu, H.1    Han, J.2    Xin, D.3
  • 44
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology
    • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25-9.
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 45
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 46
    • 70349308431 scopus 로고    scopus 로고
    • Mining association rule bases from integrated genomic data and annotations
    • Masulli F, Tagliaferri R, Verkhivker GM (eds)., Heidelberg: Springer Berlin
    • Martinez R, Pasquier N, Pasquier C. Mining association rule bases from integrated genomic data and annotations. In: Masulli F, Tagliaferri R, Verkhivker GM (eds). Computational Intelligence Methods for Bioinformatics and Biostatistics. Heidelberg: Springer Berlin, 2009, 78-90.
    • (2009) Computational Intelligence Methods for Bioinformatics and Biostatistics , pp. 78-90
    • Martinez, R.1    Pasquier, N.2    Pasquier, C.3
  • 47
    • 68849087940 scopus 로고    scopus 로고
    • Efficient mining of multilevel gene association rules from microarray and gene ontology
    • Tseng VS, Yu H-H, Yang S-C. Efficient mining of multilevel gene association rules from microarray and gene ontology. Inf Syst Front 2009;11:433-47.
    • (2009) Inf Syst Front , vol.11 , pp. 433-447
    • Tseng, V.S.1    Yu, H.-H.2    Yang, S.-C.3
  • 48
    • 80755168406 scopus 로고    scopus 로고
    • Discovering relationalbased association rules with multiple minimum supports on microarray datasets
    • Liu Y-C, Cheng C-P, Tseng VS. Discovering relationalbased association rules with multiple minimum supports on microarray datasets. Bioinformatics 2011;27:3142-8.
    • (2011) Bioinformatics , vol.27 , pp. 3142-3148
    • Liu, Y.-C.1    Cheng, C.-P.2    Tseng, V.S.3
  • 49
    • 63849229020 scopus 로고    scopus 로고
    • The conditiondependent transcriptional network in Escherichia coli
    • Lemmens K, De Bie T, Dhollander T, et al. The conditiondependent transcriptional network in Escherichia coli. AnnN YAcad Sci 2009;1158:29-35.
    • (2009) AnnN YAcad Sci , vol.1158 , pp. 29-35
    • Lemmens, K.1    De Bie, T.2    Dhollander, T.3
  • 50
    • 84884592612 scopus 로고    scopus 로고
    • Two novel interestingness measures for gene association rule mining
    • Wang M, Wu S, Cai R. Two novel interestingness measures for gene association rule mining. Neural Comput Appl 2013;23:835-41.
    • (2013) Neural Comput Appl , vol.23 , pp. 835-841
    • Wang, M.1    Wu, S.2    Cai, R.3
  • 51
    • 77954198559 scopus 로고    scopus 로고
    • An almost exhaustive search-based sequential permutation method for detecting epistasis in disease association studies
    • Ma L, Assimes T, Asadi N, et al. An almost exhaustive search-based sequential permutation method for detecting epistasis in disease association studies. Genet Epidemiol 2010;34:434-43.
    • (2010) Genet Epidemiol , vol.34 , pp. 434-443
    • Ma, L.1    Assimes, T.2    Asadi, N.3
  • 52
    • 84859841150 scopus 로고    scopus 로고
    • High-order SNP combinations associated with complex diseases: efficient discovery, statistical power and functional interactions
    • Fang G, Haznadar M, Wang W, et al. High-order SNP combinations associated with complex diseases: efficient discovery, statistical power and functional interactions. PLoS One 2012;7:e33531.
    • (2012) PLoS One , vol.7 , pp. e33531
    • Fang, G.1    Haznadar, M.2    Wang, W.3
  • 53
    • 35048823856 scopus 로고    scopus 로고
    • Association rule mining algorithms for set-valued data
    • Liu J, Cheung Y, Yin H (eds)., Heidelberg: Springer Berlin
    • Shoemaker CA, Ruiz C. Association rule mining algorithms for set-valued data. In: Liu J, Cheung Y, Yin H (eds). Intelligent Data Engineering and Automated Learning. Heidelberg: Springer Berlin, 2003, 669-76.
    • (2003) Intelligent Data Engineering and Automated Learning , pp. 669-676
    • Shoemaker, C.A.1    Ruiz, C.2
  • 54
    • 77949501686 scopus 로고    scopus 로고
    • FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium
    • Liu G, Wang Y, Wong L. FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium. BMC Bioinformatics 2010;11:66.
    • (2010) BMC Bioinformatics , vol.11 , pp. 66
    • Liu, G.1    Wang, Y.2    Wong, L.3
  • 55
    • 84925416226 scopus 로고    scopus 로고
    • Modeling networks as probabilistic sequences of frequent subgraphs
    • 16 October, date last accessed
    • Van Leemput K, Verschoren A. Modeling networks as probabilistic sequences of frequent subgraphs. http://win. ua.ac.be/~adrem/bibrem/pubs/MLSB08.pdf (16 October 2013, date last accessed).
    • (2013)
    • Van Leemput, K.1    Verschoren, A.2
  • 56
    • 44649158325 scopus 로고    scopus 로고
    • What Is Frequent in a Single Graph?
    • Washio T, Suzuki E, Ting KM, Inokuchi A (eds), Heidelberg: Springer Berlin
    • Bringmann B, Nijssen S. What Is Frequent in a Single Graph? In: Washio T, Suzuki E, Ting KM, Inokuchi A (eds). Advances in Knowledge Discovery and Data Mining. Heidelberg: Springer Berlin, 2008, 858-63.
    • (2008) Advances in Knowledge Discovery and Data Mining , pp. 858-863
    • Bringmann, B.1    Nijssen, S.2
  • 57
    • 84974733299 scopus 로고    scopus 로고
    • An Apriori-based algorithm for mining frequent substructures from graph data
    • Inokuchi A, Washio T, Motoda H. An Apriori-based algorithm for mining frequent substructures from graph data. PrincDataMin KnowlDiscov 2000;1910:13-23.
    • (2000) PrincDataMin KnowlDiscov , vol.1910 , pp. 13-23
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 59
    • 78149333073 scopus 로고    scopus 로고
    • gSpan: graph-based substructure pattern mining
    • Maebashi City, Japan, Washington, DC: IEEE Computer Society
    • Yan X, Han J. gSpan: graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 2002. Washington, DC: IEEE Computer Society, 721-4.
    • (2002) Proceedings of the 2002 IEEE International Conference on Data Mining , pp. 721-724
    • Yan, X.1    Han, J.2
  • 61
  • 62
    • 29144474447 scopus 로고    scopus 로고
    • Mining coherent dense subgraphs across massive biological networks for functional discovery
    • Hu H, Yan X, Huang Y, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 2005;21:213-21.
    • (2005) Bioinformatics , vol.21 , pp. 213-221
    • Hu, H.1    Yan, X.2    Huang, Y.3
  • 64
    • 36849004088 scopus 로고    scopus 로고
    • PathFinder: mining signal transduction pathway segments from protein-protein interaction networks
    • Bebek G, Yang J. PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 2007;8:335.
    • (2007) BMC Bioinformatics , vol.8 , pp. 335
    • Bebek, G.1    Yang, J.2
  • 66
    • 0036083294 scopus 로고    scopus 로고
    • Extraction of knowledge on protein-protein interaction by association rule discovery
    • Oyama T, Kitano K, Satou K, et al. Extraction of knowledge on protein-protein interaction by association rule discovery. Bioinformatics 2002;18:705-14.
    • (2002) Bioinformatics , vol.18 , pp. 705-714
    • Oyama, T.1    Kitano, K.2    Satou, K.3
  • 68
    • 78149313084 scopus 로고    scopus 로고
    • CMAR: accurate and efficient classification based on multiple class-association rules
    • San Jose, CA, USA, Washington, DC:IEEE Computer Society
    • Li W, Han J, Pei J. CMAR: accurate and efficient classification based on multiple class-association rules. In:Proceedings of the IEEE international conference on Data Mining (ICDM 2001). San Jose, CA, USA, 2001. Washington, DC:IEEE Computer Society, 369-76.
    • (2001) Proceedings of the IEEE international conference on Data Mining (ICDM 2001) , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 69
    • 11344262990 scopus 로고    scopus 로고
    • CPAR: classification based on predictive association rules
    • San Francisco, CA, USA, Philadelphia: SIAM
    • Yin X, Han J. CPAR: classification based on predictive association rules. In: Proceedings of the SIAM International Conference onDataMining (SDM'03). San Francisco, CA, USA, 2003. Philadelphia: SIAM, 331-5.
    • (2003) Proceedings of the SIAM International Conference onDataMining (SDM'03) , pp. 331-335
    • Yin, X.1    Han, J.2
  • 70
    • 0003450542 scopus 로고
    • The nature of statistical learning theory
    • Jordan M, Lawless JF, Lauritzen SL (eds), New York: Springer New York
    • Vapnik VN. The nature of statistical learning theory. In:Jordan M, Lawless JF, Lauritzen SL (eds). Statistics for Engineering and Information Science. New York: Springer New York, 1995.
    • (1995) Statistics for Engineering and Information Science
    • Vapnik, V.N.1
  • 71
    • 38049092147 scopus 로고    scopus 로고
    • Rule extraction from SVM for protein structure prediction
    • He J, Hu H, Chen B, et al. Rule extraction from SVM for protein structure prediction. Rule Extr Support Vector Mach 2008;80:227-52.
    • (2008) Rule Extr Support Vector Mach , vol.80 , pp. 227-252
    • He, J.1    Hu, H.2    Chen, B.3
  • 72
    • 84881127179 scopus 로고    scopus 로고
    • MIDClass:Microarray Data Classification by association rules and gene expression intervals
    • Giugno R, Pulvirenti A, Cascione L, et al. MIDClass:Microarray Data Classification by association rules and gene expression intervals. PLoS One 2013;8:e69873.
    • (2013) PLoS One , vol.8 , pp. e69873
    • Giugno, R.1    Pulvirenti, A.2    Cascione, L.3
  • 74
    • 56349123043 scopus 로고    scopus 로고
    • An expert system for detection of breast cancer based on association rules and neural network
    • Karabatak M, Ince MC. An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 2009;36:3465-9.
    • (2009) Expert Syst Appl , vol.36 , pp. 3465-3469
    • Karabatak, M.1    Ince, M.C.2
  • 75
    • 64849109745 scopus 로고    scopus 로고
    • Prediction of proteinprotein interaction types using association rule based classification
    • Park SH, Reyes JA, Gilbert DR, et al. Prediction of proteinprotein interaction types using association rule based classification. BMC Bioinformatics 2009;10:36.
    • (2009) BMC Bioinformatics , vol.10 , pp. 36
    • Park, S.H.1    Reyes, J.A.2    Gilbert, D.R.3
  • 76
    • 24144442868 scopus 로고    scopus 로고
    • Granular support vector machines with association rules mining for protein homology prediction
    • Tang Y, Jin B, Zhang Y-Q. Granular support vector machines with association rules mining for protein homology prediction. Artif IntellMed 2005;35:121-34.
    • (2005) Artif IntellMed , vol.35 , pp. 121-134
    • Tang, Y.1    Jin, B.2    Zhang, Y.-Q.3
  • 77
    • 46249123102 scopus 로고    scopus 로고
    • Microbial genotype-phenotype mapping by class association rule mining
    • Tamura M, D'haeseleer P. Microbial genotype-phenotype mapping by class association rule mining. Bioinformatics 2008;24:1523-29.
    • (2008) Bioinformatics , vol.24 , pp. 1523-1529
    • Tamura, M.1    D'haeseleer, P.2
  • 78
    • 69949189660 scopus 로고    scopus 로고
    • Exploring ant-based algorithms for gene expression data analysis
    • He Y, Hui SC. Exploring ant-based algorithms for gene expression data analysis. Artif IntellMed 2009;47:105-19.
    • (2009) Artif IntellMed , vol.47 , pp. 105-119
    • He, Y.1    Hui, S.C.2
  • 80
    • 77958060227 scopus 로고    scopus 로고
    • Using background knowledge to rank itemsets
    • Tatti N, Mampaey M. Using background knowledge to rank itemsets. DataMin Knowl Discov 2010;21:293-309.
    • (2010) DataMin Knowl Discov , vol.21 , pp. 293-309
    • Tatti, N.1    Mampaey, M.2
  • 82
    • 34249653461 scopus 로고    scopus 로고
    • Discovering significant patterns
    • Webb GI. Discovering significant patterns. Mach Learn 2007;68:1-33.
    • (2007) Mach Learn , vol.68 , pp. 1-33
    • Webb, G.I.1
  • 84
    • 79960114598 scopus 로고    scopus 로고
    • The arules Rpackage ecosystem: analyzing interesting patterns from large transaction data sets
    • Hahsler M, Chelluboina S, Hornik K, et al. The arules Rpackage ecosystem: analyzing interesting patterns from large transaction data sets. JMach Learn Res 2011;12:2021-5.
    • (2011) JMach Learn Res , vol.12 , pp. 2021-2025
    • Hahsler, M.1    Chelluboina, S.2    Hornik, K.3
  • 87
    • 33846419833 scopus 로고    scopus 로고
    • Association rule interestingness:measure and statistical validation
    • Guillet F, Hamilton HJ (eds), Heidelberg: Springer Berlin
    • Lallich S, Teytaud O, Prudhomme E. Association rule interestingness:measure and statistical validation. In: Guillet F, Hamilton HJ (eds). Quality Measures in DataMining, Vol. 43. Heidelberg: Springer Berlin, 2007, 251-75.
    • (2007) Quality Measures in DataMining , vol.43 , pp. 251-275
    • Lallich, S.1    Teytaud, O.2    Prudhomme, E.3
  • 88
    • 0033472708 scopus 로고    scopus 로고
    • A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence
    • Benjamini Y, Liu W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. JStat Planning Inf 1999;82:163-70.
    • (1999) JStat Planning Inf , vol.82 , pp. 163-170
    • Benjamini, Y.1    Liu, W.2
  • 89
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRStat Soc 1995;57:289-300.
    • (1995) JRStat Soc , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 90
    • 84878920352 scopus 로고    scopus 로고
    • Controlling false positives in association rule mining
    • Liu G, Zhang H, Wong L. Controlling false positives in association rule mining. ProcVldb Endow 2011;5:145-56.
    • (2011) ProcVldb Endow , vol.5 , pp. 145-156
    • Liu, G.1    Zhang, H.2    Wong, L.3
  • 93
    • 84860394663 scopus 로고    scopus 로고
    • Emerging patterns and classification algorithms for DNA sequence
    • Chen X, Chen J. Emerging patterns and classification algorithms for DNA sequence. J Softw 2011;6:6.
    • (2011) J Softw , vol.6 , pp. 6
    • Chen, X.1    Chen, J.2
  • 95
    • 0035007850 scopus 로고    scopus 로고
    • MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases
    • Heidelberg, Germany, Washington, DC:IEEE Computer Society
    • Burdick D, Calimlim M, Gehrke J. MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001. Washington, DC:IEEE Computer Society, 443-52.
    • (2001) Proceedings of the 17th International Conference on Data Engineering , pp. 443-452
    • Burdick, D.1    Calimlim, M.2    Gehrke, J.3
  • 97
    • 78149312575 scopus 로고    scopus 로고
    • Generating an informative cover for association rules
    • Maebashi City, Japan, Washington, DC: IEEE Computer Society
    • Cristofor L, Simovici D. Generating an informative cover for association rules. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 2002. Washington, DC: IEEE Computer Society, 597-600.
    • (2002) Proceedings of the 2002 IEEE International Conference on Data Mining , pp. 597-600
    • Cristofor, L.1    Simovici, D.2
  • 98
    • 78651076564 scopus 로고    scopus 로고
    • KNIME-the Konstanz information miner: version 2.0 and beyond
    • Berthold MR, Cebron N, Dill F, et al. KNIME-the Konstanz information miner: version 2.0 and beyond. SIGKDDExplorNewslett 2009;11:26-31.
    • (2009) SIGKDDExplorNewslett , vol.11 , pp. 26-31
    • Berthold, M.R.1    Cebron, N.2    Dill, F.3
  • 100
    • 32344434216 scopus 로고    scopus 로고
    • Orange: from experimental machine learning to interactive data mining
    • Boulicaut JF, et al (ed)., Heidelberg: Springer Berlin
    • Demšar J, Zupan B, Leban G, Curk T. Orange: from experimental machine learning to interactive data mining. In:Boulicaut JF, et al (ed). Knowledge Discovery in Databases (PKDD'04). Heidelberg: Springer Berlin, 2004, 537-9.
    • (2004) Knowledge Discovery in Databases (PKDD'04) , pp. 537-539
    • Demšar, J.1    Zupan, B.2    Leban, G.3    Curk, T.4
  • 102
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: an update
    • Hall M, Frank E, Holmes G, et al. The WEKA data mining software: an update. SIGKDD Explor Newsl 2009;11:10-8.
    • (2009) SIGKDD Explor Newsl , vol.11 , pp. 10-18
    • Hall, M.1    Frank, E.2    Holmes, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.