-
1
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Washington, DC, USA, New York: ACM
-
Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. In:Proceedings of the 1993 ACMSIGMODInternational Conference on Management of Data,Washington, DC, USA, 1993, Vol. 22. New York: ACM, 207-16.
-
(1993)
Proceedings of the 1993 ACMSIGMODInternational Conference on Management of Data
, vol.22
, pp. 207-216
-
-
Agrawal, R.1
Imieliński, T.2
Swami, A.3
-
2
-
-
33644656960
-
Integrated analysis of gene expression by association rules discovery
-
Carmona-Saez P, Chagoyen M, Rodriguez A, et al. Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics 2006;7:54.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 54
-
-
Carmona-Saez, P.1
Chagoyen, M.2
Rodriguez, A.3
-
3
-
-
84867416846
-
Cross-ontology multilevel association rule mining in the gene ontology
-
Manda P, Ozkan S, Wang H, et al. Cross-ontology multilevel association rule mining in the gene ontology. PLoS One 2012;7:e47411.
-
(2012)
PLoS One
, vol.7
, pp. e47411
-
-
Manda, P.1
Ozkan, S.2
Wang, H.3
-
4
-
-
33846194268
-
Detecting conserved interaction patterns in biological networks
-
Koyutürk M, Kim Y, Subramaniam S, et al. Detecting conserved interaction patterns in biological networks. J Comput Biol 2006;13:1299-322.
-
(2006)
J Comput Biol
, vol.13
, pp. 1299-1322
-
-
Koyutürk, M.1
Kim, Y.2
Subramaniam, S.3
-
5
-
-
84856466037
-
Subcellular localization prediction through boosting association rules
-
Yoon Y, Lee GG. Subcellular localization prediction through boosting association rules. IEEE/ACM Trans Comput Biol Bioinform 2012;9:609-18.
-
(2012)
IEEE/ACM Trans Comput Biol Bioinform
, vol.9
, pp. 609-618
-
-
Yoon, Y.1
Lee, G.G.2
-
6
-
-
0001882616
-
Fast algorithms for mining association rules
-
Bocca JB, Jarke M, Zaniolo C (eds), Santiago: Morgan Kaufman
-
Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Bocca JB, Jarke M, Zaniolo C (eds). Proceedings of the 20th VLDB Conference. Santiago: Morgan Kaufman, 1994, 487-99.
-
(1994)
Proceedings of the 20th VLDB Conference
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
7
-
-
33749560305
-
Frequent Set Mining
-
Maimon O, Rokach L (eds), Heidelberg: Springer Berlin
-
Goethals B. Frequent Set Mining. In: Maimon O, Rokach L (eds). The Data Mining and Knowledge Discovery Handbook. Heidelberg: Springer Berlin, 2010, 321-38.
-
(2010)
The Data Mining and Knowledge Discovery Handbook
, pp. 321-338
-
-
Goethals, B.1
-
8
-
-
38349166288
-
Chapter 6. Association analysis: basic concepts and algorithms
-
Addison-Wesley: Boston
-
Tan P-N, Steinbach M, Kumar V. Chapter 6. Association analysis: basic concepts and algorithms. Introduction to Data Mining. Addison-Wesley: Boston, 2005, 769.
-
(2005)
Introduction to Data Mining
, pp. 769
-
-
Tan, P.-N.1
Steinbach, M.2
Kumar, V.3
-
9
-
-
34247340013
-
Mining positive and negative association rules: an approach for confined rules
-
Boulicaut JF, Esposito F, Giannotti F, Pedreschi D (eds)., Heidelberg:Springer Berlin
-
Antonie ML, Zai{dotless}ane OR. Mining positive and negative association rules: an approach for confined rules. In:Boulicaut JF, Esposito F, Giannotti F, Pedreschi D (eds). Knowledge Discovery in Databases: PKDD 2004. Heidelberg:Springer Berlin, 2004, 27-38.
-
(2004)
Knowledge Discovery in Databases: PKDD 2004
, pp. 27-38
-
-
Antonie, M.L.1
Zaïane, O.R.2
-
10
-
-
79955766063
-
Generalizing itemset mining in a constraint programming setting
-
Džeroski S, Goethals B, Panov P (eds)., Heidelberg: Springer Berlin
-
Besson J, Boulicaut JF, Guns T, Nijssen S. Generalizing itemset mining in a constraint programming setting. In:Džeroski S, Goethals B, Panov P (eds). Inductive Databases and Constraint-Based Data Mining. Heidelberg: Springer Berlin, 2010, 107-26.
-
(2010)
Inductive Databases and Constraint-Based Data Mining
, pp. 107-126
-
-
Besson, J.1
Boulicaut, J.F.2
Guns, T.3
Nijssen, S.4
-
11
-
-
0242625291
-
Selecting the right interestingness measure for association patterns
-
Edmonton, Alberta, Canada, New York: ACM
-
Tan P-N, Kumar V, Srivastava J. Selecting the right interestingness measure for association patterns. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002. New York: ACM, 32-41.
-
(2002)
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 32-41
-
-
Tan, P.-N.1
Kumar, V.2
Srivastava, J.3
-
12
-
-
84876515907
-
STRING v9.1: protein-protein interaction networks, with increased coverage and integration
-
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2012;41:D808-15.
-
(2012)
Nucleic Acids Res
, vol.41
, pp. D808-D815
-
-
Franceschini, A.1
Szklarczyk, D.2
Frankild, S.3
-
13
-
-
85138646379
-
New algorithms for fast discovery of association rules
-
Newport Beach, CA, USA, Palo Alto, CA: AAAI Press
-
Zaki M, Parthasarathy S, Ogihara M, Li W. New algorithms for fast discovery of association rules. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD). Newport Beach, CA, USA, 1997. Palo Alto, CA: AAAI Press, 283-6.
-
(1997)
Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 283-286
-
-
Zaki, M.1
Parthasarathy, S.2
Ogihara, M.3
Li, W.4
-
14
-
-
2442449952
-
Mining frequent patterns without candidate generation: a frequent-pattern tree approach
-
Han J, Pei J, Yin Y, et al. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min KnowlDiscov 2004;8:53-87.
-
(2004)
Data Min KnowlDiscov
, vol.8
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
15
-
-
28944442644
-
Mining sequence annotation databanks for association patterns
-
Artamonova II, Frishman G, Gelfand MS, et al. Mining sequence annotation databanks for association patterns. Bioinformatics 2005;21:iii49-57.
-
(2005)
Bioinformatics
, vol.21
, pp. 49-57
-
-
Artamonova, I.I.1
Frishman, G.2
Gelfand, M.S.3
-
17
-
-
78049408050
-
Discovering protein-DNA binding sequence patterns using association rule mining
-
Leung K-S, Wong K-C, Chan T-M, et al. Discovering protein-DNA binding sequence patterns using association rule mining. Nucleic Acids Res 2010;38:6324-37.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6324-6337
-
-
Leung, K.-S.1
Wong, K.-C.2
Chan, T.-M.3
-
18
-
-
84871261147
-
COPS: detecting cooccurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets
-
Ha N, Polychronidou M, Lohmann I. COPS: detecting cooccurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. PLoS One 2012;7:e52055.
-
(2012)
PLoS One
, vol.7
, pp. e52055
-
-
Ha, N.1
Polychronidou, M.2
Lohmann, I.3
-
19
-
-
34248393544
-
Finding association rules of cis-regulatory elements involved in alternative splicing
-
Winstom-Salem,NC,USA, New York: ACM
-
Kim J, Zhao S, Heber S. Finding association rules of cis-regulatory elements involved in alternative splicing. In:Proceedings of the 45th Annual Southeast Regional Conference, Winstom-Salem,NC,USA, 2007. New York: ACM, 232-37.
-
(2007)
Proceedings of the 45th Annual Southeast Regional Conference
, pp. 232-237
-
-
Kim, J.1
Zhao, S.2
Heber, S.3
-
20
-
-
84861665777
-
Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain
-
Tweedie-Cullen RY, Brunner AM, Grossmann J, et al. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 2012;7:e36980.
-
(2012)
PLoS One
, vol.7
, pp. e36980
-
-
Tweedie-Cullen, R.Y.1
Brunner, A.M.2
Grossmann, J.3
-
21
-
-
0141940269
-
Mining residue contacts in proteins using local structure predictions
-
Zaki MJ, Jin S, Bystroff C. Mining residue contacts in proteins using local structure predictions. Trans Sys Man Cyber Part B 2003;33:789-801.
-
(2003)
Trans Sys Man Cyber Part B
, vol.33
, pp. 789-801
-
-
Zaki, M.J.1
Jin, S.2
Bystroff, C.3
-
22
-
-
4544267274
-
Automatic protein structure classification through structural fingerprinting
-
Taichung, Taiwan, Washington, DC: IEEE Computer Society
-
Aung Z, Tan KL. Automatic protein structure classification through structural fingerprinting. In: Proceedings of the 4th IEEE symposium on Bioinformatics and Bioengeering (BIBE 2004), Taichung, Taiwan, 2004. Washington, DC: IEEE Computer Society, 508-15.
-
(2004)
Proceedings of the 4th IEEE symposium on Bioinformatics and Bioengeering (BIBE 2004)
, pp. 508-515
-
-
Aung, Z.1
Tan, K.L.2
-
23
-
-
49049115442
-
Distance-Enhanced Association Rules for Gene Expression
-
Washington, DC, USA, New York:ACM
-
Icev A, Ruiz C, Ryder EF. Distance-Enhanced Association Rules for Gene Expression. In: Proceedings of the 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics (BIOKDD 2003),Washington, DC, USA, 2003. New York:ACM.
-
(2003)
Proceedings of the 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics (BIOKDD 2003)
-
-
Icev, A.1
Ruiz, C.2
Ryder, E.F.3
-
24
-
-
84890669392
-
Mining spatially cohesive itemsets in protein molecular structures
-
Chicago, IL, accepted. New York:ACM
-
Zhou C, Meysman P, Cule B, et al. Mining spatially cohesive itemsets in protein molecular structures. In: Proceedingsof the 12th InternationalWorkshop on DataMining in Bioinformatics (BIOKDD 2013), Chicago, IL, 2013. accepted. New York:ACM.
-
(2013)
Proceedingsof the 12th InternationalWorkshop on DataMining in Bioinformatics (BIOKDD 2013)
-
-
Zhou, C.1
Meysman, P.2
Cule, B.3
-
25
-
-
84884193260
-
Prediction of peptides binding to MHC class I and II alleles by temporal motif mining
-
Meydan C, Out HH, Sezerman OU. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinformatics 2013;14(Suppl 2):S13.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. S13
-
-
Meydan, C.1
Out, H.H.2
Sezerman, O.U.3
-
26
-
-
84879690753
-
A data-mining approach for multiple structural alignment of proteins
-
Siu WY, Mamoulis N, Yiu SM, Chan HL. A data-mining approach for multiple structural alignment of proteins. Bioinformation 2011;4:366-70.
-
(2011)
Bioinformation
, vol.4
, pp. 366-370
-
-
Siu, W.Y.1
Mamoulis, N.2
Yiu, S.M.3
Chan, H.L.4
-
27
-
-
41549125857
-
Fuzzy association rules for biological data analysis: a case study on yeast
-
Lopez FJ, Blanco A, Garcia F, et al. Fuzzy association rules for biological data analysis: a case study on yeast. BMC Bioinformatics 2008;9:107.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 107
-
-
Lopez, F.J.1
Blanco, A.2
Garcia, F.3
-
28
-
-
77950925363
-
Gene association analysis: a survey of frequent pattern mining from gene expression data
-
Alves R, Rodriguez-Baena DS, Aguilar-Ruiz JS. Gene association analysis: a survey of frequent pattern mining from gene expression data. Brief Bioinform 2010;11:210-24.
-
(2010)
Brief Bioinform
, vol.11
, pp. 210-224
-
-
Alves, R.1
Rodriguez-Baena, D.S.2
Aguilar-Ruiz, J.S.3
-
29
-
-
79959423582
-
DeBi: Discovering differentially expressed biclusters using a frequent itemset approach
-
Serin A, Vingron M. DeBi: Discovering differentially expressed biclusters using a frequent itemset approach. AlgorithmsMol Biol 2011;6:18.
-
(2011)
AlgorithmsMol Biol
, vol.6
, pp. 18
-
-
Serin, A.1
Vingron, M.2
-
30
-
-
84859945790
-
A novel biclustering approach to association rule mining for predicting HIV-1-human protein interactions
-
Mukhopadhyay A, Maulik U, Bandyopadhyay S. A novel biclustering approach to association rule mining for predicting HIV-1-human protein interactions. PLoS One 2013;7:e32289.
-
(2013)
PLoS One
, vol.7
, pp. e32289
-
-
Mukhopadhyay, A.1
Maulik, U.2
Bandyopadhyay, S.3
-
31
-
-
79961012403
-
Unraveling tobacco BY-2 protein complexes with BN PAGE/LCMS/MS and clustering methods
-
Remmerie N, de Vijlder T, Valkenborg D, et al. Unraveling tobacco BY-2 protein complexes with BN PAGE/LCMS/MS and clustering methods. J Proteomics 2011;74:1201-17.
-
(2011)
J Proteomics
, vol.74
, pp. 1201-1217
-
-
Remmerie, N.1
de Vijlder, T.2
Valkenborg, D.3
-
32
-
-
0038313118
-
Strong-associationrule mining for large-scale gene-expression data analysis: a case study on human SAGE data
-
research
-
Becquet C, Blachon S, Jeudy B, et al. Strong-associationrule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 2002;3:research0067.
-
(2002)
Genome Biol
, vol.3
, pp. 0067
-
-
Becquet, C.1
Blachon, S.2
Jeudy, B.3
-
33
-
-
0037245822
-
Mining gene expression databases for association rules
-
Creighton C, Hanash S. Mining gene expression databases for association rules. Bioinformatics 2003;19:79-86.
-
(2003)
Bioinformatics
, vol.19
, pp. 79-86
-
-
Creighton, C.1
Hanash, S.2
-
34
-
-
85087247073
-
Handling very large numbers of association rules in the analysis of microarray data. proc
-
Edmonton, Alberta, Canada, New York: ACM
-
Tuzhilin A. Handling very large numbers of association rules in the analysis of microarray data. proc. In:Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002. New York: ACM, 23-6.
-
(2002)
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 23-26
-
-
Tuzhilin, A.1
-
35
-
-
0032091573
-
Efficiently mining long patterns from databases
-
Seattle,WA, USA, New York: ACM
-
Bayardo RJ. Efficiently mining long patterns from databases. In: Proceedings of the 1998 ACMSIGMODInternational Conference on Management of Data, Seattle,WA, USA, 1998, Vol. 27. New York: ACM, 85-93.
-
(1998)
Proceedings of the 1998 ACMSIGMODInternational Conference on Management of Data
, vol.27
, pp. 85-93
-
-
Bayardo, R.J.1
-
36
-
-
27944443169
-
GenMax: an efficient algorithm for mining maximal frequent itemsets
-
Gouda K, Zaki MJ. GenMax: an efficient algorithm for mining maximal frequent itemsets. Data Min Knowl Discov 2005;11:223-42.
-
(2005)
Data Min Knowl Discov
, vol.11
, pp. 223-242
-
-
Gouda, K.1
Zaki, M.J.2
-
37
-
-
77955319589
-
Kernel based gene expression pattern discovery and its application on cancer classification
-
Cai R, Hao Z, Wen W, et al. Kernel based gene expression pattern discovery and its application on cancer classification. Neurocomputing 2010;73:2562-70.
-
(2010)
Neurocomputing
, vol.73
, pp. 2562-2570
-
-
Cai, R.1
Hao, Z.2
Wen, W.3
-
38
-
-
27544508838
-
Analyzing microarray data using quantitative association rules
-
Georgii E, Richter L, Rückert U, et al. Analyzing microarray data using quantitative association rules. Bioinformatics 2005;11:123-9.
-
(2005)
Bioinformatics
, vol.11
, pp. 123-129
-
-
Georgii, E.1
Richter, L.2
Rückert, U.3
-
39
-
-
77952367051
-
Carpenter: finding closed patterns in long biological datasets
-
Washington, DC, USA, New York: ACM
-
Pan F, Cong G, Tung AK, et al. Carpenter: finding closed patterns in long biological datasets. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and DataMining,Washington, DC, USA, 2003. New York: ACM, 637-42.
-
(2003)
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and DataMining
, pp. 637-642
-
-
Pan, F.1
Cong, G.2
Tung, A.K.3
-
40
-
-
5444270612
-
COBBLER: combining column and row enumeration for closed pattern discovery
-
Santorini Island, Greece, Washington, DC: IEEE Computer Society
-
Pan F, Tung A, Cong G, et al. COBBLER: combining column and row enumeration for closed pattern discovery. In: Proceedings of the16th InternationalConference on Scientific and Statistical Database Management SSDBM, Santorini Island, Greece, 2004. Washington, DC: IEEE Computer Society, 21-30.
-
(2004)
Proceedings of the16th InternationalConference on Scientific and Statistical Database Management SSDBM
, pp. 21-30
-
-
Pan, F.1
Tung, A.2
Cong, G.3
-
41
-
-
3142686884
-
FARMER: finding interesting rule groups in microarray datasets
-
Paris, France, New York: ACM
-
Cong G, Tung AK, Xu X, et al. FARMER: finding interesting rule groups in microarray datasets. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, 2004. New York: ACM, 143-54.
-
(2004)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 143-154
-
-
Cong, G.1
Tung, A.K.2
Xu, X.3
-
42
-
-
33749592722
-
Top-Down Mining of Interesting Patterns from Very High Dimensional Data
-
Long Beach, California, USA, Washington, DC: IEEE Computer Society
-
Liu H, Han J, Xin D, et al. Top-Down Mining of Interesting Patterns from Very High Dimensional Data. In: Proceedings of the 22nd international conference on Data Engineering, Long Beach, California, USA, 2006. Washington, DC: IEEE Computer Society, 114.
-
(2006)
Proceedings of the 22nd international conference on Data Engineering
, pp. 114
-
-
Liu, H.1
Han, J.2
Xin, D.3
-
43
-
-
29844457781
-
Mining top-K covering rule groups for gene expression data
-
Baltimore,MD,USA, New York: ACM
-
Cong G, Tan K, Tung AK, et al. Mining top-K covering rule groups for gene expression data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore,MD,USA, 2005. New York: ACM, 670-81.
-
(2005)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 670-681
-
-
Cong, G.1
Tan, K.2
Tung, A.K.3
-
44
-
-
0034069495
-
Gene ontology: tool for the unification of biology
-
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25-9.
-
(2000)
Nat Genet
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
-
45
-
-
0033982936
-
KEGG: kyoto encyclopedia of genes and genomes
-
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
46
-
-
70349308431
-
Mining association rule bases from integrated genomic data and annotations
-
Masulli F, Tagliaferri R, Verkhivker GM (eds)., Heidelberg: Springer Berlin
-
Martinez R, Pasquier N, Pasquier C. Mining association rule bases from integrated genomic data and annotations. In: Masulli F, Tagliaferri R, Verkhivker GM (eds). Computational Intelligence Methods for Bioinformatics and Biostatistics. Heidelberg: Springer Berlin, 2009, 78-90.
-
(2009)
Computational Intelligence Methods for Bioinformatics and Biostatistics
, pp. 78-90
-
-
Martinez, R.1
Pasquier, N.2
Pasquier, C.3
-
47
-
-
68849087940
-
Efficient mining of multilevel gene association rules from microarray and gene ontology
-
Tseng VS, Yu H-H, Yang S-C. Efficient mining of multilevel gene association rules from microarray and gene ontology. Inf Syst Front 2009;11:433-47.
-
(2009)
Inf Syst Front
, vol.11
, pp. 433-447
-
-
Tseng, V.S.1
Yu, H.-H.2
Yang, S.-C.3
-
48
-
-
80755168406
-
Discovering relationalbased association rules with multiple minimum supports on microarray datasets
-
Liu Y-C, Cheng C-P, Tseng VS. Discovering relationalbased association rules with multiple minimum supports on microarray datasets. Bioinformatics 2011;27:3142-8.
-
(2011)
Bioinformatics
, vol.27
, pp. 3142-3148
-
-
Liu, Y.-C.1
Cheng, C.-P.2
Tseng, V.S.3
-
49
-
-
63849229020
-
The conditiondependent transcriptional network in Escherichia coli
-
Lemmens K, De Bie T, Dhollander T, et al. The conditiondependent transcriptional network in Escherichia coli. AnnN YAcad Sci 2009;1158:29-35.
-
(2009)
AnnN YAcad Sci
, vol.1158
, pp. 29-35
-
-
Lemmens, K.1
De Bie, T.2
Dhollander, T.3
-
50
-
-
84884592612
-
Two novel interestingness measures for gene association rule mining
-
Wang M, Wu S, Cai R. Two novel interestingness measures for gene association rule mining. Neural Comput Appl 2013;23:835-41.
-
(2013)
Neural Comput Appl
, vol.23
, pp. 835-841
-
-
Wang, M.1
Wu, S.2
Cai, R.3
-
51
-
-
77954198559
-
An almost exhaustive search-based sequential permutation method for detecting epistasis in disease association studies
-
Ma L, Assimes T, Asadi N, et al. An almost exhaustive search-based sequential permutation method for detecting epistasis in disease association studies. Genet Epidemiol 2010;34:434-43.
-
(2010)
Genet Epidemiol
, vol.34
, pp. 434-443
-
-
Ma, L.1
Assimes, T.2
Asadi, N.3
-
52
-
-
84859841150
-
High-order SNP combinations associated with complex diseases: efficient discovery, statistical power and functional interactions
-
Fang G, Haznadar M, Wang W, et al. High-order SNP combinations associated with complex diseases: efficient discovery, statistical power and functional interactions. PLoS One 2012;7:e33531.
-
(2012)
PLoS One
, vol.7
, pp. e33531
-
-
Fang, G.1
Haznadar, M.2
Wang, W.3
-
53
-
-
35048823856
-
Association rule mining algorithms for set-valued data
-
Liu J, Cheung Y, Yin H (eds)., Heidelberg: Springer Berlin
-
Shoemaker CA, Ruiz C. Association rule mining algorithms for set-valued data. In: Liu J, Cheung Y, Yin H (eds). Intelligent Data Engineering and Automated Learning. Heidelberg: Springer Berlin, 2003, 669-76.
-
(2003)
Intelligent Data Engineering and Automated Learning
, pp. 669-676
-
-
Shoemaker, C.A.1
Ruiz, C.2
-
54
-
-
77949501686
-
FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium
-
Liu G, Wang Y, Wong L. FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium. BMC Bioinformatics 2010;11:66.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 66
-
-
Liu, G.1
Wang, Y.2
Wong, L.3
-
55
-
-
84925416226
-
Modeling networks as probabilistic sequences of frequent subgraphs
-
16 October, date last accessed
-
Van Leemput K, Verschoren A. Modeling networks as probabilistic sequences of frequent subgraphs. http://win. ua.ac.be/~adrem/bibrem/pubs/MLSB08.pdf (16 October 2013, date last accessed).
-
(2013)
-
-
Van Leemput, K.1
Verschoren, A.2
-
56
-
-
44649158325
-
What Is Frequent in a Single Graph?
-
Washio T, Suzuki E, Ting KM, Inokuchi A (eds), Heidelberg: Springer Berlin
-
Bringmann B, Nijssen S. What Is Frequent in a Single Graph? In: Washio T, Suzuki E, Ting KM, Inokuchi A (eds). Advances in Knowledge Discovery and Data Mining. Heidelberg: Springer Berlin, 2008, 858-63.
-
(2008)
Advances in Knowledge Discovery and Data Mining
, pp. 858-863
-
-
Bringmann, B.1
Nijssen, S.2
-
57
-
-
84974733299
-
An Apriori-based algorithm for mining frequent substructures from graph data
-
Inokuchi A, Washio T, Motoda H. An Apriori-based algorithm for mining frequent substructures from graph data. PrincDataMin KnowlDiscov 2000;1910:13-23.
-
(2000)
PrincDataMin KnowlDiscov
, vol.1910
, pp. 13-23
-
-
Inokuchi, A.1
Washio, T.2
Motoda, H.3
-
58
-
-
78149312583
-
Frequent Subgraph Discovery
-
San Jose, California, USA, Washington, DC:IEEE Computer Society
-
Kuramochi M, Karypis G. Frequent Subgraph Discovery. In: Proceedings of the 2001IEEE International Conference on Data Mining, San Jose, California, USA, 2001. Washington, DC:IEEE Computer Society, 313-20.
-
(2001)
Proceedings of the 2001IEEE International Conference on Data Mining
, pp. 313-320
-
-
Kuramochi, M.1
Karypis, G.2
-
59
-
-
78149333073
-
gSpan: graph-based substructure pattern mining
-
Maebashi City, Japan, Washington, DC: IEEE Computer Society
-
Yan X, Han J. gSpan: graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 2002. Washington, DC: IEEE Computer Society, 721-4.
-
(2002)
Proceedings of the 2002 IEEE International Conference on Data Mining
, pp. 721-724
-
-
Yan, X.1
Han, J.2
-
60
-
-
77952334885
-
CloseGraph: mining closed frequent graph patterns
-
Washington,DC,USA, New York: ACM
-
Yan X, Han J. CloseGraph: mining closed frequent graph patterns. In: Proceedings of the 9thACMSIGKDDInternational Conference on Knowledge Discovery and Data Mining, Washington,DC,USA, 2003. New York: ACM, 286-95.
-
(2003)
Proceedings of the 9thACMSIGKDDInternational Conference on Knowledge Discovery and Data Mining
, pp. 286-295
-
-
Yan, X.1
Han, J.2
-
62
-
-
29144474447
-
Mining coherent dense subgraphs across massive biological networks for functional discovery
-
Hu H, Yan X, Huang Y, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 2005;21:213-21.
-
(2005)
Bioinformatics
, vol.21
, pp. 213-221
-
-
Hu, H.1
Yan, X.2
Huang, Y.3
-
63
-
-
36849041067
-
Association analysisbased transformations for protein interaction networks: a function prediction case study
-
San Jose, CA, USA, New York: ACM
-
Pandey G, Garg T, Steinbach M, et al. Association analysisbased transformations for protein interaction networks: a function prediction case study. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 2007. New York: ACM, 540-9.
-
(2007)
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 540-549
-
-
Pandey, G.1
Garg, T.2
Steinbach, M.3
-
64
-
-
36849004088
-
PathFinder: mining signal transduction pathway segments from protein-protein interaction networks
-
Bebek G, Yang J. PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 2007;8:335.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 335
-
-
Bebek, G.1
Yang, J.2
-
65
-
-
34250879932
-
Differential association rule mining for the study of protein-protein interaction networks
-
Toronto, ON:ACM
-
Besemann C, Denton A, Yekkirala A, et al. Differential association rule mining for the study of protein-protein interaction networks. In: Proceedings of the 4thWorkshop on DataMining in Bioinformatics (SigKDD2004). Toronto, ON:ACM, 2004, 72-80.
-
(2004)
Proceedings of the 4thWorkshop on DataMining in Bioinformatics (SigKDD2004)
, pp. 72-80
-
-
Besemann, C.1
Denton, A.2
Yekkirala, A.3
-
66
-
-
0036083294
-
Extraction of knowledge on protein-protein interaction by association rule discovery
-
Oyama T, Kitano K, Satou K, et al. Extraction of knowledge on protein-protein interaction by association rule discovery. Bioinformatics 2002;18:705-14.
-
(2002)
Bioinformatics
, vol.18
, pp. 705-714
-
-
Oyama, T.1
Kitano, K.2
Satou, K.3
-
67
-
-
84948104699
-
Integrating classification and association rule mining
-
NewYork, NY, USA, Palo Alto, CA: AAAI Press
-
Liu B, Hsu W, Ma Y. Integrating classification and association rule mining. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, NewYork, NY, USA,1998. Palo Alto, CA: AAAI Press, 335-40.
-
(1998)
Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining
, pp. 335-340
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
68
-
-
78149313084
-
CMAR: accurate and efficient classification based on multiple class-association rules
-
San Jose, CA, USA, Washington, DC:IEEE Computer Society
-
Li W, Han J, Pei J. CMAR: accurate and efficient classification based on multiple class-association rules. In:Proceedings of the IEEE international conference on Data Mining (ICDM 2001). San Jose, CA, USA, 2001. Washington, DC:IEEE Computer Society, 369-76.
-
(2001)
Proceedings of the IEEE international conference on Data Mining (ICDM 2001)
, pp. 369-376
-
-
Li, W.1
Han, J.2
Pei, J.3
-
69
-
-
11344262990
-
CPAR: classification based on predictive association rules
-
San Francisco, CA, USA, Philadelphia: SIAM
-
Yin X, Han J. CPAR: classification based on predictive association rules. In: Proceedings of the SIAM International Conference onDataMining (SDM'03). San Francisco, CA, USA, 2003. Philadelphia: SIAM, 331-5.
-
(2003)
Proceedings of the SIAM International Conference onDataMining (SDM'03)
, pp. 331-335
-
-
Yin, X.1
Han, J.2
-
70
-
-
0003450542
-
The nature of statistical learning theory
-
Jordan M, Lawless JF, Lauritzen SL (eds), New York: Springer New York
-
Vapnik VN. The nature of statistical learning theory. In:Jordan M, Lawless JF, Lauritzen SL (eds). Statistics for Engineering and Information Science. New York: Springer New York, 1995.
-
(1995)
Statistics for Engineering and Information Science
-
-
Vapnik, V.N.1
-
71
-
-
38049092147
-
Rule extraction from SVM for protein structure prediction
-
He J, Hu H, Chen B, et al. Rule extraction from SVM for protein structure prediction. Rule Extr Support Vector Mach 2008;80:227-52.
-
(2008)
Rule Extr Support Vector Mach
, vol.80
, pp. 227-252
-
-
He, J.1
Hu, H.2
Chen, B.3
-
72
-
-
84881127179
-
MIDClass:Microarray Data Classification by association rules and gene expression intervals
-
Giugno R, Pulvirenti A, Cascione L, et al. MIDClass:Microarray Data Classification by association rules and gene expression intervals. PLoS One 2013;8:e69873.
-
(2013)
PLoS One
, vol.8
, pp. e69873
-
-
Giugno, R.1
Pulvirenti, A.2
Cascione, L.3
-
74
-
-
56349123043
-
An expert system for detection of breast cancer based on association rules and neural network
-
Karabatak M, Ince MC. An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 2009;36:3465-9.
-
(2009)
Expert Syst Appl
, vol.36
, pp. 3465-3469
-
-
Karabatak, M.1
Ince, M.C.2
-
75
-
-
64849109745
-
Prediction of proteinprotein interaction types using association rule based classification
-
Park SH, Reyes JA, Gilbert DR, et al. Prediction of proteinprotein interaction types using association rule based classification. BMC Bioinformatics 2009;10:36.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 36
-
-
Park, S.H.1
Reyes, J.A.2
Gilbert, D.R.3
-
76
-
-
24144442868
-
Granular support vector machines with association rules mining for protein homology prediction
-
Tang Y, Jin B, Zhang Y-Q. Granular support vector machines with association rules mining for protein homology prediction. Artif IntellMed 2005;35:121-34.
-
(2005)
Artif IntellMed
, vol.35
, pp. 121-134
-
-
Tang, Y.1
Jin, B.2
Zhang, Y.-Q.3
-
77
-
-
46249123102
-
Microbial genotype-phenotype mapping by class association rule mining
-
Tamura M, D'haeseleer P. Microbial genotype-phenotype mapping by class association rule mining. Bioinformatics 2008;24:1523-29.
-
(2008)
Bioinformatics
, vol.24
, pp. 1523-1529
-
-
Tamura, M.1
D'haeseleer, P.2
-
78
-
-
69949189660
-
Exploring ant-based algorithms for gene expression data analysis
-
He Y, Hui SC. Exploring ant-based algorithms for gene expression data analysis. Artif IntellMed 2009;47:105-19.
-
(2009)
Artif IntellMed
, vol.47
, pp. 105-119
-
-
He, Y.1
Hui, S.C.2
-
79
-
-
84871051408
-
Incorporating occupancy into frequent pattern mining for high quality pattern recommendation (CIKM'12)
-
Maui,Hawaii, New York: ACM
-
Tang L, Zhang L, Luo P, et al. Incorporating occupancy into frequent pattern mining for high quality pattern recommendation (CIKM'12). In: Proceedings of the 21st ACM international conference on Information and Knowledge Management.Maui,Hawaii, 2012. New York: ACM, 75-84.
-
(2012)
Proceedings of the 21st ACM international conference on Information and Knowledge Management
, pp. 75-84
-
-
Tang, L.1
Zhang, L.2
Luo, P.3
-
80
-
-
77958060227
-
Using background knowledge to rank itemsets
-
Tatti N, Mampaey M. Using background knowledge to rank itemsets. DataMin Knowl Discov 2010;21:293-309.
-
(2010)
DataMin Knowl Discov
, vol.21
, pp. 293-309
-
-
Tatti, N.1
Mampaey, M.2
-
82
-
-
34249653461
-
Discovering significant patterns
-
Webb GI. Discovering significant patterns. Mach Learn 2007;68:1-33.
-
(2007)
Mach Learn
, vol.68
, pp. 1-33
-
-
Webb, G.I.1
-
84
-
-
79960114598
-
The arules Rpackage ecosystem: analyzing interesting patterns from large transaction data sets
-
Hahsler M, Chelluboina S, Hornik K, et al. The arules Rpackage ecosystem: analyzing interesting patterns from large transaction data sets. JMach Learn Res 2011;12:2021-5.
-
(2011)
JMach Learn Res
, vol.12
, pp. 2021-2025
-
-
Hahsler, M.1
Chelluboina, S.2
Hornik, K.3
-
86
-
-
67049097997
-
WiFIsViz:Effective Visualization of Frequent Itemsets
-
Pisa, Italy, Washington, DC: IEEE Computer Society
-
Leung CK-S, Irani PP, Carmichael CL. WiFIsViz:Effective Visualization of Frequent Itemsets. In: Proceedings of the eighth IEEE international conference on Data Mining (ICDM'08), Pisa, Italy, 2008. Washington, DC: IEEE Computer Society, 875-80.
-
(2008)
Proceedings of the eighth IEEE international conference on Data Mining (ICDM'08)
, pp. 875-880
-
-
Leung, C.K.-S.1
Irani, P.P.2
Carmichael, C.L.3
-
87
-
-
33846419833
-
Association rule interestingness:measure and statistical validation
-
Guillet F, Hamilton HJ (eds), Heidelberg: Springer Berlin
-
Lallich S, Teytaud O, Prudhomme E. Association rule interestingness:measure and statistical validation. In: Guillet F, Hamilton HJ (eds). Quality Measures in DataMining, Vol. 43. Heidelberg: Springer Berlin, 2007, 251-75.
-
(2007)
Quality Measures in DataMining
, vol.43
, pp. 251-275
-
-
Lallich, S.1
Teytaud, O.2
Prudhomme, E.3
-
88
-
-
0033472708
-
A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence
-
Benjamini Y, Liu W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. JStat Planning Inf 1999;82:163-70.
-
(1999)
JStat Planning Inf
, vol.82
, pp. 163-170
-
-
Benjamini, Y.1
Liu, W.2
-
89
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRStat Soc 1995;57:289-300.
-
(1995)
JRStat Soc
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
90
-
-
84878920352
-
Controlling false positives in association rule mining
-
Liu G, Zhang H, Wong L. Controlling false positives in association rule mining. ProcVldb Endow 2011;5:145-56.
-
(2011)
ProcVldb Endow
, vol.5
, pp. 145-156
-
-
Liu, G.1
Zhang, H.2
Wong, L.3
-
91
-
-
0002034653
-
Efficient Mining of Emerging Patterns:Discovering Trends and Differences
-
San Diego, CA, USA. New York: ACM
-
Dong G, Li J. Efficient Mining of Emerging Patterns:Discovering Trends and Differences. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'99), San Diego, CA, USA. New York: ACM, 1999, 43-52.
-
(1999)
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'99)
, pp. 43-52
-
-
Dong, G.1
Li, J.2
-
93
-
-
84860394663
-
Emerging patterns and classification algorithms for DNA sequence
-
Chen X, Chen J. Emerging patterns and classification algorithms for DNA sequence. J Softw 2011;6:6.
-
(2011)
J Softw
, vol.6
, pp. 6
-
-
Chen, X.1
Chen, J.2
-
95
-
-
0035007850
-
MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases
-
Heidelberg, Germany, Washington, DC:IEEE Computer Society
-
Burdick D, Calimlim M, Gehrke J. MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001. Washington, DC:IEEE Computer Society, 443-52.
-
(2001)
Proceedings of the 17th International Conference on Data Engineering
, pp. 443-452
-
-
Burdick, D.1
Calimlim, M.2
Gehrke, J.3
-
97
-
-
78149312575
-
Generating an informative cover for association rules
-
Maebashi City, Japan, Washington, DC: IEEE Computer Society
-
Cristofor L, Simovici D. Generating an informative cover for association rules. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 2002. Washington, DC: IEEE Computer Society, 597-600.
-
(2002)
Proceedings of the 2002 IEEE International Conference on Data Mining
, pp. 597-600
-
-
Cristofor, L.1
Simovici, D.2
-
98
-
-
78651076564
-
KNIME-the Konstanz information miner: version 2.0 and beyond
-
Berthold MR, Cebron N, Dill F, et al. KNIME-the Konstanz information miner: version 2.0 and beyond. SIGKDDExplorNewslett 2009;11:26-31.
-
(2009)
SIGKDDExplorNewslett
, vol.11
, pp. 26-31
-
-
Berthold, M.R.1
Cebron, N.2
Dill, F.3
-
99
-
-
80052415210
-
MIME: a framework for interactive visual pattern mining
-
Athens, Greece, Heidelberg: Springer Berlin
-
Goethals B, Moens S, Vreeken J. MIME: a framework for interactive visual pattern mining. In: Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III, Athens, Greece, 2011. Heidelberg: Springer Berlin, 634-7.
-
(2011)
Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III
, pp. 634-637
-
-
Goethals, B.1
Moens, S.2
Vreeken, J.3
-
100
-
-
32344434216
-
Orange: from experimental machine learning to interactive data mining
-
Boulicaut JF, et al (ed)., Heidelberg: Springer Berlin
-
Demšar J, Zupan B, Leban G, Curk T. Orange: from experimental machine learning to interactive data mining. In:Boulicaut JF, et al (ed). Knowledge Discovery in Databases (PKDD'04). Heidelberg: Springer Berlin, 2004, 537-9.
-
(2004)
Knowledge Discovery in Databases (PKDD'04)
, pp. 537-539
-
-
Demšar, J.1
Zupan, B.2
Leban, G.3
Curk, T.4
-
101
-
-
33749558210
-
YALE: rapid prototyping for complex data mining tasks
-
Ungar L, Craven M, Gunopulos D, Eliassi-Rad T (eds)., New York: ACM
-
Mierswa I, Wurst M, Klinkenberg R, et al. YALE: rapid prototyping for complex data mining tasks. In: Ungar L, Craven M, Gunopulos D, Eliassi-Rad T (eds). In:Proceedings of the 12th ACMSIGKDDInternational Conference on Knowledge Discovery and Data Mining (KDD'06), Philadelphia, PA,USA. New York: ACM, 2006, 935-40.
-
(2006)
In:Proceedings of the 12th ACMSIGKDDInternational Conference on Knowledge Discovery and Data Mining (KDD'06), Philadelphia, PA,USA
, pp. 935-940
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
|