메뉴 건너뛰기




Volumn 11, Issue 2, 2009, Pages 210-224

Gene association analysis: A survey of frequent pattern mining from gene expression data

Author keywords

Frequent pattern mining; Gene association analysis; Gene expression analysis

Indexed keywords

ALGORITHM; ARTICLE; AUTOMATED PATTERN RECOGNITION; BIOLOGY; DNA MICROARRAY; DNA SEQUENCE; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; METHODOLOGY;

EID: 77950925363     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbp042     Document Type: Article
Times cited : (71)

References (47)
  • 1
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: a Survey
    • Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data: a Survey. IEEE Trans Knowl Data Eng 2004;16: 1370-86.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 3
    • 0038313118 scopus 로고    scopus 로고
    • Strong-associationrule mining for large-scale gene-expression data analysis: a case study on human SAGE data
    • Becquet C, Blachon S, Jeudy B, et al. Strong-associationrule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 2002;3:12.
    • (2002) Genome Biol , vol.3 , pp. 12
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3
  • 4
    • 33644656960 scopus 로고    scopus 로고
    • Integrated analysis of gene expression by association rules discovery
    • Carmona-Saez P, Chagoyen M, Rodriguez A, et al. Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics 2006;7:54.
    • (2006) BMC Bioinformatics , vol.7 , pp. 54
    • Carmona-Saez, P.1    Chagoyen, M.2    Rodriguez, A.3
  • 5
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • Creighton C, Hanash S. Mining gene expression databases for association rules. Bioinformatics 2003;19:79-86.
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 6
    • 36849004088 scopus 로고    scopus 로고
    • PathFinder: mining signal transduction pathway segments from protein-protein interaction networks
    • Bebek G, Yang J. PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 2007;8:335.
    • (2007) BMC Bioinformatics , vol.8 , pp. 335
    • Bebek, G.1    Yang, J.2
  • 7
    • 41549125857 scopus 로고    scopus 로고
    • Fuzzy association rules for biological data analysis: a case study on yeast
    • Lopez FJ, Blanco A, Garcia F, et al. Fuzzy association rules for biological data analysis: a case study on yeast. BMC Bioinformatics 2008;9:107.
    • (2008) BMC Bioinformatics , vol.9 , pp. 107
    • Lopez, F.J.1    Blanco, A.2    Garcia, F.3
  • 12
    • 26944497301 scopus 로고    scopus 로고
    • Assessment of discretization techniques for relevant pattern discovery from gene expression data
    • Seattle, Washington, USA
    • Pensa RG, Leschi C, Besson J, et al. Assessment of discretization techniques for relevant pattern discovery from gene expression data. In: Proceedings of 4th Workshop on DataMining in Bioinformatics BIOKDD. Seattle, Washington, USA, 2004;24-30.
    • (2004) Proceedings of 4th Workshop on DataMining in Bioinformatics BIOKDD , pp. 24-30
    • Pensa, R.G.1    Leschi, C.2    Besson, J.3
  • 14
    • 36248985095 scopus 로고    scopus 로고
    • Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning
    • Ponzoni I, Azuaje F, Augusto JC, et al. Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning. IEEE/ACM Trans Comput Biol Bioinform 2007;4: 624-33.
    • (2007) IEEE/ACM Trans Comput Biol Bioinform , vol.4 , pp. 624-633
    • Ponzoni, I.1    Azuaje, F.2    Augusto, J.C.3
  • 16
    • 41549110210 scopus 로고    scopus 로고
    • A gene pattern mining algorithm using interchangeable gene sets for prokaryotes
    • Hu M, Choi K, Su W, et al. A gene pattern mining algorithm using interchangeable gene sets for prokaryotes. BMC Bioinformatics 2008;9:124.
    • (2008) BMC Bioinformatics , vol.9 , pp. 124
    • Hu, M.1    Choi, K.2    Su, W.3
  • 17
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Tahoe City, California, USA: Morgan Kaufmann
    • Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous features. In: International Conference on Machine Learning. Tahoe City, California, USA: Morgan Kaufmann, 1995;194-202.
    • (1995) International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 18
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuousvalued attributes for classification learning
    • Chambéry, France: Morgan Kaufmann
    • Fayya and Irani. Multi-interval discretization of continuousvalued attributes for classification learning. In: Proceedings of the International Joint Conference on Uncertainty in AI. Chambéry, France: Morgan Kaufmann, 1993;1022-27.
    • (1993) Proceedings of the International Joint Conference on Uncertainty in AI , pp. 1022-1027
    • Fayya1    Irani2
  • 23
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: current status and future directions
    • Han J, Cheng H, Xin D, et al. Frequent pattern mining: current status and future directions. Data Min Knowl Discov 2007;15:55-86.
    • (2007) Data Min Knowl Discov , vol.15 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3
  • 25
    • 27944443169 scopus 로고    scopus 로고
    • GenMax: an efficient algorithm for mining maximal frequent itemsets
    • Gouda K, Zaki MJ. GenMax: an efficient algorithm for mining maximal frequent itemsets. Data Min Knowl Discov 2005;11:223-42.
    • (2005) Data Min Knowl Discov , vol.11 , pp. 223-242
    • Gouda, K.1    Zaki, M.J.2
  • 26
    • 0033096890 scopus 로고    scopus 로고
    • Efficient mining of association rules using closed itemset lattices
    • Pasquier N, Bastide Y, Taouil R, et al. Efficient mining of association rules using closed itemset lattices. Inf Syst 1999; 24:25-46.
    • (1999) Inf Syst , vol.24 , pp. 25-46
    • Pasquier, N.1    Bastide, Y.2    Taouil, R.3
  • 36
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • Hughes T, Marton M, Jones A, et al. Functional discovery via a compendium of expression profiles. Cell 2000;102: 109-26.
    • (2000) Cell , vol.102 , pp. 109-126
    • Hughes, T.1    Marton, M.2    Jones, A.3
  • 37
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology
    • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25-9. Gene association analysis 223
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 38
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: new developments in KEGG
    • Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006;32:354-57.
    • (2006) Nucleic Acids Res , vol.32 , pp. 354-357
    • Kanehisa, M.1    Goto, S.2    Hattori, M.3
  • 40
    • 27544508838 scopus 로고    scopus 로고
    • Analyzing microarray data using quantitative association rules
    • Georgii E, Richter L, Rückert U. Analyzing microarray data using quantitative association rules. Bioinformatics 2005;11:123-9.
    • (2005) Bioinformatics , vol.11 , pp. 123-129
    • Georgii, E.1    Richter, L.2    Rückert, U.3
  • 42
    • 0032508637 scopus 로고    scopus 로고
    • Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae
    • Martins L, Jensen L, Simon J, et al. Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 1998;273:716-21.
    • (1998) J Biol Chem , vol.273 , pp. 716-721
    • Martins, L.1    Jensen, L.2    Simon, J.3
  • 43
    • 63149102006 scopus 로고    scopus 로고
    • Identification of temporal association rules from time-series microarray data sets
    • Nam H, Lee K, Lee D. Identification of temporal association rules from time-series microarray data sets. BMC Bioinformatics 2009;10:3.
    • (2009) BMC Bioinformatics , vol.10 , pp. 3
    • Nam, H.1    Lee, K.2    Lee, D.3
  • 44
    • 33845657847 scopus 로고    scopus 로고
    • Understanding SAGE data
    • Wang SM. Understanding SAGE data. Trends Genet 2007; 23:42-50.
    • (2007) Trends Genet , vol.23 , pp. 42-50
    • Wang, S.M.1
  • 45
    • 33847205295 scopus 로고    scopus 로고
    • GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists
    • Carmona-Saez P, Chagoyen M, Tirado F, et al. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 2007;8:R3.
    • (2007) Genome Biol , vol.8
    • Carmona-Saez, P.1    Chagoyen, M.2    Tirado, F.3
  • 46
    • 3142536716 scopus 로고    scopus 로고
    • Exploration of essential gene functions via titratable promoter alleles
    • Mnaimneh S, Davierwala AP, Haynes J, et al. Exploration of essential gene functions via titratable promoter alleles. Cell 2004;118:31-44.
    • (2004) Cell , vol.118 , pp. 31-44
    • Mnaimneh, S.1    Davierwala, A.P.2    Haynes, J.3
  • 47
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman P, Sherlock G, Zhang M, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Biol Cell 1998;9:3273-97.
    • (1998) Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.