메뉴 건너뛰기




Volumn 73, Issue 13-15, 2010, Pages 2562-2570

Kernel based gene expression pattern discovery and its application on cancer classification

Author keywords

Association rule; Cancer classification; Gene expression; Kernel density estimation

Indexed keywords

CANCER CLASSIFICATION; CLASSIFICATION MODELS; CONDITIONAL INDEPENDENCES; GENE EXPRESSION DATA; GENE EXPRESSION DATA ANALYSIS; GENE EXPRESSION PATTERNS; HIGH-DIMENSIONAL; INTERESTING RULES; INTERESTINGNESS; INTERESTINGNESS MEASURES; KERNEL DENSITY ESTIMATION; OVERFITTING; PRUNING STRATEGY; REDUNDANT RULES;

EID: 77955319589     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.05.019     Document Type: Article
Times cited : (14)

References (28)
  • 2
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Isabelle G., Jason W., Stephen B., Vladimir V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46(1):389-422.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 389-422
    • Isabelle, G.1    Jason, W.2    Stephen, B.3    Vladimir, V.4
  • 3
    • 19344363436 scopus 로고    scopus 로고
    • Predictive neural networks for gene expression data analysis
    • Ah Hwee T., Hong P. Predictive neural networks for gene expression data analysis. Neural Networks 2005, 18(3):297-306.
    • (2005) Neural Networks , vol.18 , Issue.3 , pp. 297-306
    • Ah Hwee, T.1    Hong, P.2
  • 4
    • 4744364173 scopus 로고    scopus 로고
    • Cancer classification and prediction using logistic regression with bayesian gene selection
    • Zhou X., Liu K.Y., Wong T.C. Cancer classification and prediction using logistic regression with bayesian gene selection. Journal of Biomedical Informatics 2004, 37(4):249-259.
    • (2004) Journal of Biomedical Informatics , vol.37 , Issue.4 , pp. 249-259
    • Zhou, X.1    Liu, K.Y.2    Wong, T.C.3
  • 5
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • Li L., Weinberg C.R., Darden T.A., Pedersen L.G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001, 17(12):1131-1142.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 6
    • 12244289603 scopus 로고    scopus 로고
    • Between-group analysis of microarray data
    • Culhane A.C., Perriere G., Considine E.C., et al. Between-group analysis of microarray data. Bioinformatics 2002, 18(12):1600-1608.
    • (2002) Bioinformatics , vol.18 , Issue.12 , pp. 1600-1608
    • Culhane, A.C.1    Perriere, G.2    Considine, E.C.3
  • 7
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • Creighton C., Hanash S. Mining gene expression databases for association rules. Bioinformatics 2003, 19(1):79-86.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 8
    • 3142686884 scopus 로고    scopus 로고
    • Farmer: finding interesting rule groups in microarray datasets, in: Proceeding of SIGMOD Conference
    • G. Cong, A.K.H. Tung, X. Xu, F. Pan, J. Yang, Farmer: finding interesting rule groups in microarray datasets, in: Proceeding of SIGMOD Conference, 2004, pp. 143-154.
    • (2004) , pp. 143-154
    • Cong, G.1    Tung, A.K.H.2    Xu, X.3    Pan, F.4    Yang, J.5
  • 9
    • 29844457781 scopus 로고    scopus 로고
    • Mining top-k covering rule groups for gene expression data, in: Proceeding of SIGMOD Conference
    • G. Cong, K.L. Tan, A.K.H. Tung, X. Xu, Mining top-k covering rule groups for gene expression data, in: Proceeding of SIGMOD Conference, 2005, pp. 670-681.
    • (2005) , pp. 670-681
    • Cong, G.1    Tan, K.L.2    Tung, A.K.H.3    Xu, X.4
  • 10
    • 27544508838 scopus 로고    scopus 로고
    • Analyzing microarray data using quantitative association rules
    • Georgii E., Richter L., Ruckert U., Kramer S. Analyzing microarray data using quantitative association rules. Bioinformatics 2005, 21:123-129.
    • (2005) Bioinformatics , vol.21 , pp. 123-129
    • Georgii, E.1    Richter, L.2    Ruckert, U.3    Kramer, S.4
  • 11
    • 0002776254 scopus 로고    scopus 로고
    • Integrating classification and association rule mining, in: Proceeding of KDD Conference
    • B. Liu, W. Hsu, Y. Ma, Integrating classification and association rule mining, in: Proceeding of KDD Conference, 1998, pp. 80-86.
    • (1998) , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 12
    • 0036083435 scopus 로고    scopus 로고
    • Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
    • Li J., Wong L. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 2002, 18(5):725-734.
    • (2002) Bioinformatics , vol.18 , Issue.5 , pp. 725-734
    • Li, J.1    Wong, L.2
  • 13
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):6.
    • (1999) Science , vol.286 , Issue.5439 , pp. 6
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 14
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering and correlation clustering
    • Kriegel H.P., Kröger P., Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering and correlation clustering. ACM Transactions on Knowledge Discovery from Data 2009, 3(1):1-58.
    • (2009) ACM Transactions on Knowledge Discovery from Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.P.1    Kröger, P.2    Zimek, A.3
  • 15
    • 33644667964 scopus 로고    scopus 로고
    • Evaluating the performance of cost-based discretization versus entropy and error based discretization
    • Janssens D., Brijs T., Vanhoof K., Wets G. Evaluating the performance of cost-based discretization versus entropy and error based discretization. Computers and Operations Research 2006, 33(11):17.
    • (2006) Computers and Operations Research , vol.33 , Issue.11 , pp. 17
    • Janssens, D.1    Brijs, T.2    Vanhoof, K.3    Wets, G.4
  • 16
    • 77955341723 scopus 로고    scopus 로고
    • Feature selection for high-dimensional genomic microarray data, in: Proceedings of ICML Conference
    • E. Xing, M.I. Jordan, R.M. Karp, Feature selection for high-dimensional genomic microarray data, in: Proceedings of ICML Conference, 2001, pp. 601-608.
    • (2001) , pp. 601-608
    • Xing, E.1    Jordan, M.I.2    Karp, R.M.3
  • 17
    • 0028516150 scopus 로고
    • Nonparametric multivariate density estimation: a comparative study
    • Hwang J.N., Lay S.R., Lippman A. Nonparametric multivariate density estimation: a comparative study. IEEE Transactions on Signal Processing 1994, 42(10):2795-2810.
    • (1994) IEEE Transactions on Signal Processing , vol.42 , Issue.10 , pp. 2795-2810
    • Hwang, J.N.1    Lay, S.R.2    Lippman, A.3
  • 19
    • 19544367586 scopus 로고    scopus 로고
    • Mining frequent closed patterns in microarray data, in: Proceeding of ICDM Conference
    • G. Cong, K.-L. Tan, A.K.H. Tung, F. Pan, Mining frequent closed patterns in microarray data, in: Proceeding of ICDM Conference, 2004, pp. 363-366.
    • (2004) , pp. 363-366
    • Cong, G.1    Tan, K.-L.2    Tung, A.K.H.3    Pan, F.4
  • 23
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barka N., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(12):5.
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.12 , pp. 5
    • Alon, U.1    Barka, N.2
  • 24
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp M.A., Ross K.N., Tamayo P., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 2002, 8(1):68-74.
    • (2002) Nature Medicine , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3
  • 26
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon G.J., Jensen R.V., Hsiao L.L., et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 2002, 62(17):4963-4967.
    • (2002) Cancer Research , vol.62 , Issue.17 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.L.3
  • 28
    • 77955338658 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, 1995, pp. 1137-1145.
    • (1995) , pp. 1137-1145
    • Kohavi, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.