-
1
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown M., Grundyand W., Lin D., et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences of the United States of America 2000, 97(1):262-267.
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.1
Grundyand, W.2
Lin, D.3
-
2
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Isabelle G., Jason W., Stephen B., Vladimir V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46(1):389-422.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 389-422
-
-
Isabelle, G.1
Jason, W.2
Stephen, B.3
Vladimir, V.4
-
3
-
-
19344363436
-
Predictive neural networks for gene expression data analysis
-
Ah Hwee T., Hong P. Predictive neural networks for gene expression data analysis. Neural Networks 2005, 18(3):297-306.
-
(2005)
Neural Networks
, vol.18
, Issue.3
, pp. 297-306
-
-
Ah Hwee, T.1
Hong, P.2
-
4
-
-
4744364173
-
Cancer classification and prediction using logistic regression with bayesian gene selection
-
Zhou X., Liu K.Y., Wong T.C. Cancer classification and prediction using logistic regression with bayesian gene selection. Journal of Biomedical Informatics 2004, 37(4):249-259.
-
(2004)
Journal of Biomedical Informatics
, vol.37
, Issue.4
, pp. 249-259
-
-
Zhou, X.1
Liu, K.Y.2
Wong, T.C.3
-
5
-
-
0036139278
-
Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
-
Li L., Weinberg C.R., Darden T.A., Pedersen L.G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001, 17(12):1131-1142.
-
(2001)
Bioinformatics
, vol.17
, Issue.12
, pp. 1131-1142
-
-
Li, L.1
Weinberg, C.R.2
Darden, T.A.3
Pedersen, L.G.4
-
6
-
-
12244289603
-
Between-group analysis of microarray data
-
Culhane A.C., Perriere G., Considine E.C., et al. Between-group analysis of microarray data. Bioinformatics 2002, 18(12):1600-1608.
-
(2002)
Bioinformatics
, vol.18
, Issue.12
, pp. 1600-1608
-
-
Culhane, A.C.1
Perriere, G.2
Considine, E.C.3
-
7
-
-
0037245822
-
Mining gene expression databases for association rules
-
Creighton C., Hanash S. Mining gene expression databases for association rules. Bioinformatics 2003, 19(1):79-86.
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 79-86
-
-
Creighton, C.1
Hanash, S.2
-
8
-
-
3142686884
-
-
Farmer: finding interesting rule groups in microarray datasets, in: Proceeding of SIGMOD Conference
-
G. Cong, A.K.H. Tung, X. Xu, F. Pan, J. Yang, Farmer: finding interesting rule groups in microarray datasets, in: Proceeding of SIGMOD Conference, 2004, pp. 143-154.
-
(2004)
, pp. 143-154
-
-
Cong, G.1
Tung, A.K.H.2
Xu, X.3
Pan, F.4
Yang, J.5
-
9
-
-
29844457781
-
-
Mining top-k covering rule groups for gene expression data, in: Proceeding of SIGMOD Conference
-
G. Cong, K.L. Tan, A.K.H. Tung, X. Xu, Mining top-k covering rule groups for gene expression data, in: Proceeding of SIGMOD Conference, 2005, pp. 670-681.
-
(2005)
, pp. 670-681
-
-
Cong, G.1
Tan, K.L.2
Tung, A.K.H.3
Xu, X.4
-
10
-
-
27544508838
-
Analyzing microarray data using quantitative association rules
-
Georgii E., Richter L., Ruckert U., Kramer S. Analyzing microarray data using quantitative association rules. Bioinformatics 2005, 21:123-129.
-
(2005)
Bioinformatics
, vol.21
, pp. 123-129
-
-
Georgii, E.1
Richter, L.2
Ruckert, U.3
Kramer, S.4
-
11
-
-
0002776254
-
-
Integrating classification and association rule mining, in: Proceeding of KDD Conference
-
B. Liu, W. Hsu, Y. Ma, Integrating classification and association rule mining, in: Proceeding of KDD Conference, 1998, pp. 80-86.
-
(1998)
, pp. 80-86
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
12
-
-
0036083435
-
Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
-
Li J., Wong L. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 2002, 18(5):725-734.
-
(2002)
Bioinformatics
, vol.18
, Issue.5
, pp. 725-734
-
-
Li, J.1
Wong, L.2
-
13
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):6.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 6
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
14
-
-
67149084291
-
Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering and correlation clustering
-
Kriegel H.P., Kröger P., Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering and correlation clustering. ACM Transactions on Knowledge Discovery from Data 2009, 3(1):1-58.
-
(2009)
ACM Transactions on Knowledge Discovery from Data
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.P.1
Kröger, P.2
Zimek, A.3
-
15
-
-
33644667964
-
Evaluating the performance of cost-based discretization versus entropy and error based discretization
-
Janssens D., Brijs T., Vanhoof K., Wets G. Evaluating the performance of cost-based discretization versus entropy and error based discretization. Computers and Operations Research 2006, 33(11):17.
-
(2006)
Computers and Operations Research
, vol.33
, Issue.11
, pp. 17
-
-
Janssens, D.1
Brijs, T.2
Vanhoof, K.3
Wets, G.4
-
16
-
-
77955341723
-
-
Feature selection for high-dimensional genomic microarray data, in: Proceedings of ICML Conference
-
E. Xing, M.I. Jordan, R.M. Karp, Feature selection for high-dimensional genomic microarray data, in: Proceedings of ICML Conference, 2001, pp. 601-608.
-
(2001)
, pp. 601-608
-
-
Xing, E.1
Jordan, M.I.2
Karp, R.M.3
-
17
-
-
0028516150
-
Nonparametric multivariate density estimation: a comparative study
-
Hwang J.N., Lay S.R., Lippman A. Nonparametric multivariate density estimation: a comparative study. IEEE Transactions on Signal Processing 1994, 42(10):2795-2810.
-
(1994)
IEEE Transactions on Signal Processing
, vol.42
, Issue.10
, pp. 2795-2810
-
-
Hwang, J.N.1
Lay, S.R.2
Lippman, A.3
-
19
-
-
19544367586
-
-
Mining frequent closed patterns in microarray data, in: Proceeding of ICDM Conference
-
G. Cong, K.-L. Tan, A.K.H. Tung, F. Pan, Mining frequent closed patterns in microarray data, in: Proceeding of ICDM Conference, 2004, pp. 363-366.
-
(2004)
, pp. 363-366
-
-
Cong, G.1
Tan, K.-L.2
Tung, A.K.H.3
Pan, F.4
-
21
-
-
0003614273
-
-
MIT Press
-
Spirtes P., Glymour C., Scheines R. Causation, Prediction, and Searches 2001, MIT Press.
-
(2001)
Causation, Prediction, and Searches
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
23
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
Alon U., Barka N., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(12):5.
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.12
, pp. 5
-
-
Alon, U.1
Barka, N.2
-
24
-
-
18244409933
-
Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
-
Shipp M.A., Ross K.N., Tamayo P., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 2002, 8(1):68-74.
-
(2002)
Nature Medicine
, vol.8
, Issue.1
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
-
25
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signatures
-
Ramaswamy S., Tamayo P., Rifkin R., et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America 2001, 98(26):15149-15154.
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.26
, pp. 15149-15154
-
-
Ramaswamy, S.1
Tamayo, P.2
Rifkin, R.3
-
26
-
-
0036735386
-
Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
-
Gordon G.J., Jensen R.V., Hsiao L.L., et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 2002, 62(17):4963-4967.
-
(2002)
Cancer Research
, vol.62
, Issue.17
, pp. 4963-4967
-
-
Gordon, G.J.1
Jensen, R.V.2
Hsiao, L.L.3
-
27
-
-
27544451127
-
-
Tan A.C., Naiman D.Q., Xu L., et al. Simple decision rules for classifying human cancers from gene expression profiles 2005, 21(20):3896-3904.
-
(2005)
Simple decision rules for classifying human cancers from gene expression profiles
, vol.21
, Issue.20
, pp. 3896-3904
-
-
Tan, A.C.1
Naiman, D.Q.2
Xu, L.3
-
28
-
-
77955338658
-
-
A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI
-
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, 1995, pp. 1137-1145.
-
(1995)
, pp. 1137-1145
-
-
Kohavi, R.1
|